Солнечный коллектор из пластиковой гофро. Солнечный воздушный коллектор



Альтернативные источники возобновляемой энергии пользуются огромной популярностью. В некоторых странах ЕС автономное теплоснабжение покрывает более 50% потребностей в энергии. В РФ солнечные коллекторы пока не получили широкого распространения. Одна из основных причин: дороговизна оборудования. За гелиопанель отечественного изготовителя потребуется отдать не менее 16-20 тыс. руб. Продукция европейских брендов обойдется еще дороже, начиная с 40-45 тыс. руб.

Изготовление солнечного коллектора своими руками будет дешевле, по крайней мере в половину. Самодельный гелиоколлектор обеспечит достаточным количеством тепла для нагрева душевой воды на 3-4 человек. Для изготовления понадобятся строительные инструменты, смекалка и подручные средства.

Из чего можно сделать гелиосистему

Для начала следует разобраться в том, какой принцип работы использует солнечный водонагреватель. Во внутреннем устройстве блока присутствуют следующие узлы:
  • корпус;
  • абсорбер;
  • теплообменник, внутри которого будет циркулировать теплоноситель;
  • отражатели для фокусировки солнечных лучей.
Заводской коллектор для нагрева воды от солнца работает следующим образом:
  • Абсорбция тепла - солнечные лучи проходят сквозь стекло, расположенное поверх корпуса, либо через вакуумные трубки. Внутренний абсорбирующий слой, контактирующий с теплообменником окрашен селективной краской. При попадании солнечных лучей на абсорбер выделяется большое количество тепла, которое собирается и используется для нагрева воды.
  • Теплопередача - абсорбер расположен в тесном контакте с теплообменником. Аккумулируемое абсорбером и передаваемое теплообменнику тепло нагревает жидкость, движущуюся по трубкам к змеевику внутри бака теплонакопителя. Циркуляция воды в водонагревателе осуществляется принудительным или естественным способом.
  • ГВС - используется два принципа подогрева горячей воды:
    1. Прямой нагрев - горячая вода после нагрева попросту сбрасывается в теплоизолированную емкость. В моноблочной гелиосистеме в качестве теплоносителя используется обычная бытовая вода.
    2. Второй вариант - обеспечение ГВС с пассивным водонагревателем по принципу косвенного нагрева. Теплоноситель (часто антифриз) под давлением направляется в теплообменник гелиоколлектора. После нагрева разогретая жидкость подается в накопительный бак, внутри которого встроен змеевик (играющий роль нагревательного элемента), окруженный водой для системы горячего водоснабжения.
      Теплоноситель разогревает змеевик, посредством чего и передает тепло воде, находящейся в емкости. При открытии крана нагретая вода из теплоаккумулирующей ёмкости поступает к точке водоразбора. Особенность гелиосистемы с косвенным нагревом в способности работать в течение всего года.
Принцип работы, используемый в дорогостоящих заводских гелиосистемах, копируется и повторяется в коллекторах, изготавливаемых своими руками.

Рабочие конструкции солнечных водонагревателей имеют схожее устройство. Только изготавливаются из подручных материалов. Существуют схемы производства коллекторов из:

  • поликарбоната;
  • вакуумных трубок;
  • ПЭТ бутылок;
  • пивных банок;
  • радиатора холодильника;
  • медных трубок;
  • ПНД и ПВХ труб.
Судя по схемам, современные «Кулибины» отдают предпочтение самодельным системам с естественной циркуляцией, термосифонного типа. Особенность решения в том, что накопительную емкость располагают в верхней точке ГВС. Вода самотеком циркулирует в системе и подается потребителю.

Коллектор из поликарбоната

Изготавливают из сотовых панелей, отличающихся хорошими теплоизоляционными свойствами. Толщина листов от 4 до 30 мм. Выбор толщины поликарбоната зависит от необходимой теплоотдачи. Чем толще лист и ячейки в нем, тем больше воды сможет нагреть установка.

Чтобы самому сделать гелиосистему, в частности самодельный солнечный водонагреватель из поликарбоната, понадобятся следующие материалы:

  • две штанги с нарезанной резьбой;
  • пропиленовые уголки, на фитингах должно быть наружное резьбовое соединение;
  • пластиковые трубы ПВХ: 2 шт, длина 1,5 м, диаметр 32;
  • 2 заглушки.
Трубы укладывают в корпус параллельно. Подключают к ГВС через отсекающие краны. Вдоль трубы делают тонкий надрез, в который можно вставить лист поликарбоната. Благодаря принципу термосифона вода будет самостоятельно поступать в желобки (ячейки) листа, нагреваться и уходить в накопитель, расположенный вверху всей системы нагрева. Для герметизации и фиксации листов, вставленных в трубу, используют силикон, стойкий к термическому воздействию.


Чтобы увеличить теплоэффективность коллектора из сотового поликарбоната, лист покрывают любой селективной краской. Нагрев воды после нанесения селективного покрытия ускоряется приблизительно в два раза.

Коллектор из вакуумных трубок

В этом случае не получится обойтись исключительно подручными средствами. Для изготовления солнечного коллектора придется купить вакуумные трубки. Их продают компании, занимающиеся обслуживанием гелиосистем и непосредственно производители гелиоводонагревателей.

Для самостоятельного производства лучше выбирать колбы с перьевыми стержнями и тепловым каналом heat-pipe. Трубки легче монтировать и менять в случае необходимости.

Также нужно приобрести блок-концентратор для вакуумного солнечного коллектора. При выборе обращают внимание на производительность узла (определяется по количеству трубок, которые можно одновременно подключить к устройству). Раму изготавливают самостоятельно, собирая деревянный каркас. Экономия при изготовлении в домашних условиях, с учетом приобретения готовых вакуумных трубок, составит не менее 50%.

Гелиосистема из пластиковых бутылок

Для приготовления потребуется около 30 шт. ПЭТ бутылок. При сборке удобнее использовать тару одинакового размера на 1 или 1,5 л. На подготовительном этапе с бутылок снимают этикетки, поверхность тщательно промывают. Кроме пластиковой тары понадобится следующее:
  • 12 м шланга для полива растений, диаметром 20 мм;
  • 8 Т-образных переходников;
  • 2 колена;
  • рулон тефлоновой пленки;
  • 2 шаровых крана.
При изготовлении солнечных коллекторов из пластиковых бутылок внизу основания делают отверстие, равное диаметру горлышка, куда вставляют резиновый шланг, либо ПВХ трубу. Коллектор собирают в 5 рядов по 6 бутылок на каждой линии.


В ясный день уже через 15 мин. вода нагреется до температуры 45°С. Учитывая высокую производительность солнечный водонагреватель из пластиковых бутылок имеет смысл подключить к накопительной емкости в 200 л. Последнюю хорошо утепляют для предотвращения теплопотерь.

Коллектор из алюминиевых пивных банок

Алюминий отличается хорошими теплотехническими характеристиками. Не удивительно, что металл используют для изготовления радиаторов отопления.

Алюминиевые банки можно применять при изготовлении самодельных гелиосистем. Для производства не подойдут банки из жести и любого другого металла.

Для одной гелиопанели будут необходимы следующие комплектующие:

  • банки, около 15 шт. на линию, в корпус вмещается 10-15 рядов;
  • теплообменник - используется коллектор из резинового шланга, или пластиковых труб;
  • клей для склеивания банок между собой;
  • селективная краска.
Поверхность банок окрашивается в темный цвет. Короб накрывают толстым стеклом или поликарбонатом.


Солнечный коллектор из алюминиевых банок чаще изготавливают для воздушного отопления. При использовании водяного теплоносителя снижается теплоэффективность устройства.

Гелиосистема из холодильника

Еще одно популярное решение, требующее минимальных затрат времени и средств. Солнечный коллектор делают из радиатора старого холодильника. Змеевик уже окрашен в черный цвет. Достаточно только уложить решетку в деревянный корпус с изоляцией и подключить его к ГВС, при помощи пайки.

Существует вариант изготовления из конденсатора кондиционера. Для этого несколько радиаторов соединяют в единую сеть. Если существует возможность приобрести дешево около 8 шт. конденсаторов, изготовление коллектора вполне возможно.

Коллектор из медных трубок

Медь отличается хорошими теплотехническими свойствами. При изготовлении медного солнечного коллектора используют:
  • трубы диаметром 1 1/4", используемые при монтаже систем отопления и горячего водоснабжения;
  • трубы на 1/4", используемые в системах кондиционирования;
  • газовая горелка;
  • припой и флюс.
Корпус радиаторной решетки собирается из медных труб с большим диаметром. В поверхности просверливают отверстия равные 1/4". В полученные пазы вставляют трубы соответствующего диаметра. Радиатор закрывают стеклом или поликарбонатом. Медь окрашивают селективной краской.








Солнечный бойлер из ПНД труб и ПВХ шлангов

При производстве гелиосистем используют практически любой подручный материал. Существуют решения, позволяющие изготовить коллектор из гофрошланга, резинового шланга, используемого для полива растений.

Из металлопластиковой трубы гелиосистемы не делают из-за резиновых уплотнителей фитингов, не выдерживающих сильного нагрева. При интенсивном солнечном излучении нагрев в коллекторе достигает 300°С. При перегреве уплотнительные прокладки обязательно дадут течь.

Существует возможность изготовления солнечного коллектора из гофрированной нержавеющей трубы. Популярность решения обусловлена скоростью и простотой монтажа. Гофротруба из нержавейки укладывается кольцами или змейкой. Недостаток, относительная дороговизна нержавеющей гофрированной трубы.

Несмотря на существующие варианты, описанные выше, наиболее популярными остаются солнечные коллекторы из пропиленовых и ПНД труб. У каждого варианта есть свои преимущества:

  • Солнечный коллектор из ПНД трубы - для изготовления выбирают материал, устойчивый к нагреванию. Продается большое количество фитингов, облегчающих сборку теплоаккумулирующего радиатора. Трубы из полиэтилена низкого давления изначально имеют черный или темно-синий цвет, поэтому не требуют окрашивания.
  • Солнечный коллектор из ПВХ труб - популярность решения в простоте монтажа конструкции, осуществляемого с помощью пайки. Наличие большого количества уголков, тройников, американок и других фитингов облегчает процесс сборки. С помощью пайки можно создать теплообменник коллектора любой конфигурации.




Изготовление солнечного водогрейного коллектора из PEX трубы:












Все описанные трубы с той или иной эффективностью используются в качестве сердечника при изготовлении самодельного гелиоколлектора из пластиковых бутылок и алюминиевых банок.

Как сделать селективное покрытие

Высокоэффективный коллектор имеет высокую степень поглощения солнечной энергии. Лучи попадают на темную поверхность, после чего нагревают ее. Чем меньше излучения отталкивается от абсорбера солнечного коллектора, тем больше тепла остается в гелиосистеме.

Чтобы обеспечить достаточную аккумуляцию тепла требуется создать селективное покрытие. Вариантов производства несколько:

  • Самодельное селективное покрытие коллектора - используют любые черные краски, которые после высыхания оставляют матовую поверхность. Есть решения, когда в качестве абсорбера коллектора применяют непрозрачную темную клеенку. На трубы теплообменника, поверхность банок и бутылок наносят черную эмаль, с матовым эффектом.
  • Специальные абсорбирующие покрытия - можно пойти другим путем, приобретя для коллектора специальную селективную краску. В состав селективных ЛКМ входят полимерные пластификаторы и присадки, обеспечивающие хорошую адгезию, теплостойкость и высокую степень поглощения солнечных лучей.


Гелиосистемы, используемые исключительно для нагрева воды летом, вполне могут обойтись окрашиванием абсорбера в черный цвет при помощи обычной краски. Самодельные солнечные коллекторы для отопления дома зимой должны иметь качественное селективное покрытие. Экономить на краске нельзя.

Самодельная или заводская гелиосистема - что лучше

Изготовить в домашних условиях солнечный коллектор, способный по техническим характеристикам и показателям сравниться с заводской продукцией нереально. С другой стороны, если требуется просто обеспечить достаточным количество воды для летнего душа, солнечной энергии будет достаточно для работы простейшего самодельного водонагревателя.

Что касается жидкостных коллекторов, работающих зимой - то даже не все заводские гелиосистемы могут работать при низких температурах. Всесезонные системы, это чаще всего устройства с вакуумными тепловыми трубками, с повышенным КПД, способные работать до температуры –50°С.

Заводские гелиоколлекторы часто укомплектовываются поворотным механизмом, автоматически подстраивающим угол наклона и направленность панели по сторонам света, в зависимости от расположения Солнца.

Эффективный солнечный водонагреватель тот, что полностью соответствует поставленным перед ним задачам. Для подогрева воды на 2-3 человек летом, можно обойтись обычным гелиоколлектором, изготовленным своими руками из подручных средств. Для отопления зимой, несмотря на первоначальные затраты, лучше установить заводскую гелиосистему.

Видеокурс по изготовлению панельного солнечного водонагревателя






Экология потребления.Усадьба:Солнечный воздушный коллектор, о строительстве которого пойдет речь, является нечто средним между воздушным коллектором с лабиринтом и коллектором из водосточных труб. Основным материалом для изготовления солнечного воздушного коллектора является гофрированный алюминиевый воздуховод.

С приходом холодов, каждый задумывается об обогреве своего жилья, подсобных помещений, теплиц и т.д., однако с каждым годом цены на энергоносители постоянно растут, и наибольшая статья расходов в холодное время года как раз приходится на отопление. Однако эту статью расходов можно уменьшить, если в качестве дополнительного отопления использовать бесплатную энергию солнца, при помощи нехитрого устройства – солнечного воздушного коллектора, который можно изготовить своими руками.

Солнечный воздушный коллектор, о строительстве которого пойдет речь, является нечто средним между воздушным коллектором с лабиринтом и коллектором из водосточных труб.

Основным материалом для изготовления солнечного воздушного коллектора является гофрированный алюминиевый воздуховод преимущество, которого заключается в том, что гофра имеет:

Большую площадь наружной поверхности на единицу длины в отличие от гладкой трубы,

За счет неровности поверхности, внутри трубы создается турбулентное движение воздуха, который в свою очередь лучше прогревается.

В данном солнечном воздушном коллекторе использовался алюминиевый гофрированный воздуховод диаметром 80мм. и длиной 10 метров. Вся эта труба поместилась в коробе размером 90х90см.

В качестве утеплителя для задней и боковых стенок, был выбран фольгированный пенополистирол толщиной 25мм. В принципе из этого материала и был изготовлен первоначальный короб.


Чтобы работать с гофрой было удобно, изгибы гофры необходимо фиксировать проволокой к боковой стенке.


Когда гофра уложена полностью, можно приступить к покраске воздуховода. Для этих целей будем использовать термостойкую черную краску в баллончиках, которую можно приобрести на авторынке (для покраски глушителей).


Боковые стенки воздушного коллектора, будут служить отражателями (поскольку на них нанесена алюминиевая фольга), поэтому их окрашивать не стоит и при покраске необходимо облепить газетами.

Поскольку пенополистирол, не особо прочен, для его защиты необходимо будет собрать более прочный корпус из дерева и фанеры, и всю конструкцию накрыть стеклом.

Для принудительной вентиляции был использован канальный вентилятор, но вполне можно использовать и кулер от компьютера. Вентилятор был выбран на 12В из тех соображений, чтобы его можно было подключить к солнечной батареи.

Чтобы высокая температура, негативным образом не воздействовала на вентилятор, его необходимо устанавливать на вход воздушного коллектора.


Испытания данного солнечного воздушного коллектора производились при окружающей температуре 17° С, и уже через полчаса, температура достигла своего максимума 39,5° С. Это конечно маловато, но чего можно требовать от коллектора площадью 0.81 м.кв.

Такая площадь для отопления в зимний период будет маловата, поэтому если вы желаете, получить теплый воздух достаточный для обогрева помещения, при низких температурах за окном, следует увеличить площадь воздушного коллектора как минимум в 4 раза. Кроме того, целесообразно, чтобы забор воздуха происходил из помещения, а не с улицы, чтобы не тратить лишнюю энергию на прогрев очень холодного воздуха. опубликовано

Описанная ниже конструкция — термосифонный солнечный коллектор, основан на медной трубе и алюминиевом оребрении. Медное оребрение имеет немного более эффективную теплоотдачу, но стоимость медных листов увеличивает цену коллектора в 3-4 раза. Пайка ребер к трубам -тоже непростая задача. Производительность способа переноса тепла от алюминиевых пластин медным трубам заключается в обеспечении хорошего теплового контакта. Как это реализуется — читайте ниже. По ссылке доступны данного прототипа.

Какова цель самодельной термосифонной системы:

  • Производительность, близкая к коммерческим коллекторам.
  • Низкая стоимость (до 1/4 от цены за покупную систему).
  • Длительный срок службы.
  • Легкость исполнения своими руками из доступных каждому материалов.

Солнце нагревает воду, снижает ее плотность и вода поднимается в резервуар. Нагретая вода выходит из коллектора, ее постепенно замещает холодная, подающаяся естественной циркуляцией из резервуара в коллектор через нижнее соединение. Насос в данной конструкции не нужен. Контроль осуществляется автоматически, так как движение воды останавливается, как только коллектор остывает ниже температуры накопительного бака. Принцип термосифона подробно рассмотрен в статье.

Этот вариант термосифонного коллектора не предусматривает использование при минусовых температурах, поэтому при первых заморозках систему необходимо сливать.

В качестве примера взяты два прототипа коллектора одинаковой конфигурации, поэтому фото могут отличаться в некоторых несущественных деталях.

Термосифонная система своими руками

Из чего собран термосифонный солнечный коллектор:

  • Гофрированный поликарбонатный лист SunTuf.
  • Рама из пиломатериалов.
  • Фанера или ОСБ для основы.
  • Жесткая теплоизоляция (теплоизолятор может быть любым, от этого будут зависеть «слои» подложки — с жесткой изоляцией в данной конструкцией заднюю часть коллектора больше ничем не закрывали).
  • Алюминий листовой для абсорбера 0,5 мм.
  • Трубы медные.
  • Фитинги медные.
  • Термостойкий силикон.
  • Винты, краска, волнистые рейки для крепления поликарбоната (их можно изготовить из досок лобзиком).

Данная конструкция термосифонного солнечного коллектора основывается на алюминиевом абсорбере. Ребра увеличивают площадь передачи тепла от пластины к трубе и имеют паз по форме этой трубы.

2 способа сделать абсорбер медной трубы из алюминия

Использование листового алюминия в связке с медными трубами очень часто используется канадцами, американцами, австралийцами. У нас же это непопулярное решение (насколько мне известно). Кто-то занимается , кто-то просто красит трубы.

Приспособление для гибки листового алюминия изготавливается из фанеры 19 мм толщиной и длиной около метра, в которой есть канавка квадратной формы 16Х16 мм. Для формирования углубления под трубу взят стальной стержень диаметром 16 мм (труба в большинстве коллекторов берется полдюймовая).


«Гнездо» для формовки алюминия сделано из двух брусков фанеры 16 мм, так приклеенных и привинченных к основе, чтобы образовать квадратную канавку. Листовой алюминий некоторых брендов уже имеет небольшой сгиб ровно по середине листа, а если его нет — нужно быть более внимательным при гибке.

Метод прессования молотком кажется неубедительным на первый взгляд, но на практике прекрасно работает. Процесс гибки алюминия с помощью прута и кувалды понятен из фото: положите металл на фанеру точно над пазом, установите стержень, придерживайте его и без сверхусилий бейте вертикально поставленным молотком по конструкции. Такой способ не дает ребрам загибаться вверх.


Как только вы «набьете руку», гибка одного абсорбера будет занимать не более 20 секунд.

Не забывайте проверять плотность прилегания абсорбера к трубе.

Фанерку для гибки всегда можно усовершенствовать держателями для стержня, ограничителем по одной стороне для того, чтобы лист алюминия не скользил по фанере.

Не стоит делать слишком длинные ребра, так как медь и алюминий расширяются с разной скоростью и короткие ребра (60-70 см) справятся с этим лучше. Ребра необходимо выровнять, опрессовать.

Существует способ полностью обернуть трубу алюминием. Пошаговые фото этого процесса смотрите ниже.

Этот метод позволяет добиться полного контакта абсорбера с медной трубой, что улучшает производительность коллектора, но и усложняет процесс создания абсорбера.

Конечно, описанные здесь способы не предел фантазии. Во время подготовки статьи мне встречались и высокотехнологичные для домашнего использования решения, такие как эти:

Как выровнять алюминиевые ребра абсорбера

Вероятно, можно придумать множество вариантов, как выровнять абсорбер после гибки. В данном случае автор конструкции соорудил пресс, который вы видите на фото. Ему нужно было обработать много алюминия для теплого пола и этот пресс работал быстрее и аккуратнее способа с молотком.

Пресс продавливает алюминий закрепленным стальным стержнем. Эта конструкция вполне сносно работает благодаря длинным рычагам, увеличивающим массу тела.

Даже если оребрение идеально совпадает с формой трубы, силикон обязательно нужен для оптимизации сцепления между металлами.

Как оптимизировать сцепление между металлами

В канавку наносится тонкий слой термостойкого силикона. Силикон обладает теплопроводностью в 10 раз большей, чем воздух, поэтому даже при очень хорошем сцеплении он не помешает. Помимо теплопроводности, силикон уменьшает риск гальванической коррозии путем герметизации от возможной влаги. Более подробно про улучшение сцепления между абсорбером я расскажу в следующей статье.

Укладка дополнительной полосы алюминия под трубу

В некоторых прототипах коллекторов ставят еще одну пластину алюминия под каждой медной трубой. Это дополнительная зона контакта между медью и абсорбером, помогающая избежать потери тепла на внешнем крае ребра. Про эффективность алюминиевого абсорбера готовлю отдельный материал.

Изготовление труб для коллектора

Размер коллектора должен быть таким, чтобы как можно меньше осталось отходов от резки медной трубы:). На фото размер фанеры 238Х117 см (перевожу дюймы в сантиметры, поэтому цифры выглядят немного странно). Параметры основы напрямую зависят от размера материала, который накроет коллектор (стекло или поликарбонат).

Так будет выглядеть медная решетка. Вода будет поступать в нижнем правом углу, проходить весь путь и выходить в верхнем левом.

Вырезаем трубы нужной длины. После резки необходимо зачистить места среза, особенно с внутренней стороны. На специальном инструменте для резки труб предусмотрено лезвие для этого. На фото очистка переходников и труб от остатков резки.

Примеряем алюминиевые ребра, подгоняем до идеального соприкосновения между отдельными деталями абсорбера. Режем отрезки трубы под соединения. Напоминаю, все замеры должны быть идеальными — расстояние между трубами должно равняться ширине ребер абсорберов.

Первый стояк получает Т-образный фитинг (на прием воды), а последний стояк получает коленчатое соединение. На другом конце коллектора колено идет к первой трубе, а тройник к последней (выход горячей воды). Такая обвязка обеспечивает примерно одинаковую циркуляцию.

Припаиваем все детали решетки.

После того, как решетка остынет, ее нужно будет тщательно отмыть от флюса жидкостью для мытья посуды.

Спаянные трубы должны пройти испытание на герметичность. На фото показан простейший способ, который прекрасно работает. Необходимо закрыть выпускное отверстие в нижнем конце и медленно наполнить сетку водой. Если у вас есть возможность использовать небольшое давление, то это вообще отлично.

Как сделать раму для солнечного коллектора

Рама должна иметь такой размер, чтобы в нее стала фанера с абсорбером. Углы скреплены шурупами и клеем. Рама в данном случае была загрунтована и покрашена эпоксидной краской.


Установка трубной сетки

Прижимаем трубы к фанере, добавляем фитинги к подаче и обратке. В данной конструкции выходы предусмотрены в заднюю часть коллектора. Можно припаять впускной и выпускной клапан сразу.

Прокладываем полосы алюминия под трубы. Выше я уже обращал внимание, зачем это делается. Полоса силикона заполняет пустоты между трубой и пластиной. Далее наносим силикон на всю пластину.

Силикон остается гибким при тех температурах, в которых придется работать коллектору. Это очень хороший способ сохранения и передачи тепла от абсорбера к решетке. В продаже есть термостойкие силиконы с наполнителями, увеличивающими теплопроводность.

Установка абсорберов


В канавку ребра наносим полоской герметик. Слой должен быть очень тонким. Плотно прибиваем ребра к фанере с помощью степлера скобами из нержавеющей стали. В одном из прототипов используются шурупы.


Установка алюминиевого абсорбера
Закрепление оребрения степлером

На абсорбер необходимо нанести . В гаражных условиях очень удобно воспользоваться краской для каминов и барбекю, в продаже есть и селективные краски для коллекторов.

Нужно очистить поверхность алюминия и меди от герметика и других загрязнений с помощью ацетона или другого подходящего растворителя. Абсорбер должен быть абсолютно сухим перед покраской.

Установка изоляции на солнечный коллектор

В данном случае используется жесткая изоляционная плита. Полистирол брать нежелательно из-за высоких температур. На фото изоляция приклеивается полиуретановой пеной. На плиту обязательно нужно установить груз, так как пена будет пытаться расшириться.

Вовсе не обязательно использовать поликарбонат, как в данном случае. Но именно гофрированный поликарбонат наиболее популярен в самоделках у американцев. Он обеспечивает высокую теплопередачу, прочный и гибкий, фильтрует ультрафиолет (так утверждает автор прототипа, но встречавшийся мне ПК был УФ-пропускающим). Для коллектора это хорошие показатели.

Листы поликарбоната в этой конфигурации соединены путем наложения гофра на гофр и склеены прозрачным силиконом.

Устанавливаем опоры для остекления. Здесь используется тонкостенная оцинкованная металлическая трубка кабелепровод. Необходимо просверлить отверстие в раме, как на фото. Проклеить паз. К слову, на фотографиях один из вариантов — все делается точно так-же, как и с медью.

На ребро рамы нужно наложить полоску древесины. Высота полоски должна соответствовать высоте «волны» поликарбоната. Уложите лист так, чтобы ребра поликарбоната можно было герметично прикрутить к раме. ПК вверху и внизу устанавливается на специальную волнистую полосу, используйте силикон для герметизации швов.

Над листом поликарбоната необходимо установить полосы древесины, которые будут равномерно прижимать его в верхней и нижней части. На фото хорошо видно, о чем я.

На фото видны внешние сантехнические детали. Резервуар находится прямо за стеной над коллектором. В холодном климате трубы необходимо теплоизолировать. Гофрированный подвод предусмотрен на случай каких-либо передвижений коллектора. Сливной клапан для сброса воды на зиму.


Бак для коллектора и сантехнические работы

В качестве резервуара для воды используется старый газовый бак. Устанавливать бак необходимо выше коллектора, чтобы работала естественная циркуляция. Если открыть запорные краны, горячая вода будет поступать из резервуара с холодной стороны электрического бака. Холодная вода поступает в коллектор из старого слива газового бака, горячая вода из коллектора выходит в старый выпускной клапан. Выпускной клапан установлен в резервуар и коллектор. Термодатчик так же установлен на бак и на солнечную панель.

На фото бак для сбора горячей воды из коллектора. Солнечная панель находится за стеной, на выходе двух труб.

На фотографии новый электрический нагреватель для резервного подогрева. Горячая вода из коллектора поступает во входное отверстие для холодной воды в этом баке.

Существуют разные варианты резервуаров для солнечного коллектора, например .

Замеры температуры

При температуре около 60 градусов вода поступает в резервуар. Бак прекрасно держит температуру всю ночь, электрический нагреватель не включали. Воду из коллектора используют на стирку, душ и мытье посуды. За бортом температура воздуха была не выше 30 градусов (май 2010 года). Испытания производительности в деталях в следующей статье.

Вариант крепления системы:


Использовать бесплатную солнечную энергию для отопления и горячего водоснабжения дома довольно заманчиво. Сделать это можно с помощью гелиоустановки, главным элементом которой является солнечный коллектор. Но одним из сдерживающих факторов использования гелиоустановок является их относительно большая стоимость. Но ведь их можно сделать самостоятельно. Поэтому, в этой статье мы расскажем о принципе их работы, видах, а также как собрать и изготовить солнечный коллектор своими руками для отопления дома и обеспечения его горячей водой из разных подручных материалов.

Принцип работы и виды солнечных коллекторов

Солнечные коллекторы представляют собой теплообменники, которые улавливают энергию Солнца и превращают ее, в зависимости от их вида, в тепловую энергию жидкости или воздуха, циркулирующих в них. Нагретые в коллекторе жидкость или воздух используются для горячего водоснабжения или отопления дома напрямую или через дополнительные теплообменники, например, через бойлеры косвенного нагрева. Главная задача любого такого коллектора: как можно больше «поймать» солнечной энергии и с наименьшими потерями передать его циркулирующему в нем теплоносителю.

Виды гелиоколлекторов

По виду циркулирующего и нагреваемого в них теплоносителя солнечные коллекторы могут быть:

  • Жидкостными;
  • Воздушными.

По конструктивным особенностям и виду теплообменной поверхности они могут быть:

  • В виде емкости;
  • Трубными;
  • Плоскими;
  • Вакуумными.

Жидкостные солнечные коллекторы, как следует из их названия, в рабочем состоянии заполнены жидкостью, которая циркулирует и нагревается в них. Это может быть обычная вода или незамерзающая жидкость (антифриз). В первом случае, нагретая вода может подаваться напрямую в систему горячего водоснабжения, в накопительную емкость или в бойлер косвенного нагрева, а во втором случае – только в бойлер. Такие коллекторы могут использоваться как для обеспечения дома горячей водой, так и для его отопления. Все зависит от мощности гелиоустановки.

Воздушные гелиоколлекторы используются, главным образом, для отопления дома. Холодный воздух из помещения подается в такой коллектор, нагревается там и подается назад в помещение с помощью естественной или принудительной циркуляции.

Большинство из этих видов солнечных коллекторов можно изготовить самостоятельно. Проявив фантазию, для их изготовления можно использовать разные подручные материалы: пластиковые или металлические емкости, трубы, шланги, б/у радиаторы и даже пивные банки. Ниже, мы рассмотрим несколько конструкций солнечных коллекторов, которые можно изготовить своими руками, используя эти и другие подручные материалы.

Солнечный коллектор из металлической или пластиковой емкости

Простейший солнечный коллектор можно изготовить своими руками из металлической или пластиковой емкости объемом 50-100 л. Это так называемый летний душ, который довольно распространен в сельской местности и на дачах.

Солнечный коллектор для нагрева воды из металлических бочек

Лучшим металлическим вариантом такого коллектора будет емкость из нержавеющей стали, покрашенная снаружи в черный цвет. Правда, стоимость такой новой емкости довольно высокая. Поэтому можно использовать б/у емкости. Например, сварить бак из двух нержавеющих емкостей от старых стиральных машин. Можно использовать и емкости из черного металла, оцинкованные или окрашенные водостойкой краской. Пластиковые емкости хороши тем, что имеют небольшой вес и не подвергаются коррозии, но они недолговечны, так как пластик плохо переносит ультрафиолетовое излучение.

Бочка устанавливается на южной стороне крыши дома или непосредственно над летним душем. Если бочка не герметична, то подвод холодной и забор нагретой осуществляется снизу. Давление теплой воды в точке забора будет определяться высотой установки и уровнем воды в бочке. Она наполняется холодной водой, которая в течении некоторого времени нагревается, а потом используется.

Если бочка герметична, то подача холодной воды осуществляется снизу, а забор теплой — вверху. Такая емкость подключается к системе холодного водоснабжения (насосной станции) и при заборе нагретой воды в бочку поступает из системы холодная, вытесняя теплую в верхнюю часть.

Преимущество такого солнечного коллектора в простоте. Его несложно сделать своими руками. Если бочка цилиндрической формы, то она хорошо освещается солнечными лучами на протяжении всего дня.

Недостатки данной конструкции:

  • Использовать можно только в теплое время года;
  • малоэффективна в ветреную погоду и когда солнце закрыто облаками;
  • Большая инерционность — относительно длительный нагрев воды;
  • Нагретая днем вода ночью остывает.

Как изготовить и собрать солнечный коллектор из металлических труб

Простой и эффективный солнечный коллектор можно изготовить своими руками из тонкостенных металлических трубок: стальных, медных или алюминиевых. Он представляет собой трубчатый теплообменник (радиатор), который помещается в теплоизолированную коробку из досок, фанеры или ДСП.

Лучшим материалом для изготовления радиатора гелиоколлектора безусловно является медь. Она обладает отличной теплопередачей и не подвержена коррозии. Но этот материал довольно дорогой. Алюминиевые трубки, хотя дешевле медных, но могут возникнуть трудности при их сварке.

Дешевле и проще всего изготовить теплообменник из стальных труб. Их можно сварить при помощи обычного сварочного аппарата. Для изготовления такого радиатора могут быть использованы стальные трубы диаметром ½ — 1″. При этом, для подвода холодной и отвода нагретой воды используются трубы большего диаметра и с большей толщиной стенок, а для самого теплообменника — меньшего диаметра и с меньшей толщиной стенок.

Схема радиатора солнечного коллектора из труб

Размеры радиатора солнечного коллектора, а следовательно длинна труб зависит от требуемой мощности. Но если сделать его слишком большим и громоздким, то могут возникнуть трудности с его сборкой и установкой. Поэтому, лучше всего, если его размеры будут в пределах: ширина — 0,8-1 м, а высота 1,5-1,6 м. Мощность такого коллектора будет в пределах 1,2-1,4 кВт. Если же вам необходимо увеличить мощность гелиоустановки, то можно изготовить несколько таких коллекторов и соединить их между собой.

В этом случае для изготовления радиатора солнечного коллектора нам понадобятся две толстостенные трубы диаметром ¾ — 1″ длиной 0,8-1м и 12-18 тонкостенных трубок диаметром ½ — ¾ » и длиной 1,5-1,6 м.

В толстостенных трубах, которые будут служить для подвода и отвода воды, сверлятся отверстия под тонкостенные трубы меньшего диаметра с шагом 3-4,5 см. Один конец такой трубы глушится, а к другому приваривается или нарезается в нем резьба.

Трубы свариваются в одну конструкцию радиатора и красятся черной матовой краской.

Теперь необходимо изготовить теплоизолированный короб для радиатора. Для этого можно использовать влагоустойчивую фанеру, плиты ДСП, OSB или обрезные доски. Но лучше всего подошла бы водостойкая фанера (ФСФ).

Размеры короба рассчитываются с учетом размеров радиатора, слоя утеплителя и зазоров между ними. Высота бортов короба должна учитывать толщину утеплителя, самих труб, а также расстояние их от днища и закрывающего короб стекла или поликарбоната (10-12 мм). В верхнем торце бортов делается выборка (паз) под стекло или поликарбонат. В одном из боковых бортов делаются отверстия для труб подвода и отвода воды. Элементы короба в одну конструкцию соединяются с помощью саморезов.

В качестве утеплителя можно взять пенополистирол, обычный (пенопласт) или экструдированный, а также минеральную вату плотностью не менее 25. Слой утеплителя (не менее 5 см) монтируется изнутри на днище и по бокам короба. Сверху на него укладывается лист оцинкованного металла или слой толстой фольги, которые также окрашиваются в черный матовый цвет.

Радиатор крепится в коробе с помощью хомутов или зажимов, наличие которых необходимо предусмотреть еще на этапе изготовления короба. Место расположения и размеры хомутов зависят от конструкции радиатора и размера труб.

Сверху короб накрывается стеклом или поликарбонатом. Накрытие укладывается в пазы (выборку) и надежно крепится. Все стыки герметизируются.

Солнечный коллектор готов. Его необходимо установить на южной стороне дома с наклоном к горизонту 35-45 ⁰. На его базе можно изготовить гелиоустановку, которая включает в себя теплоизолированный накопитель теплой воды емкостью 100-200 литров или бойлер косвенного нагрева.

Установка готового солнечного коллектора

Коллектор из пластиковых или металлопластиковых труб

Солнечный коллектор своими руками можно также изготовить используя пластиковые ПНД или ПП трубы. Теплопередача пластика хотя и меньше, чем у металлических на 13-15%, но зато он намного дешевле меди и не подвержен коррозии, как черная сталь.

Для изготовления простого солнечного коллектора своими руками трубы ПНД диаметром 13-20 мм можно уложить в коробе в виде спирали, закрепить с помощью хомутов и покрасить в черный цвет.

Вариант солнечного коллектора из пластиковых ПНД труб

Полипропиленовые трубы гнутся плохо, но их просто соединять с помощью пайки, используя специальные фитинги. Подводные трубы (горизонтальные коллекторы) можно изготовить из ПП труб диаметром 25 мм, а сам теплообменник из труб диаметром 20 мм. Готовый радиатор солнечного коллектора красим в черный цвет и монтируем в короб, который изготавливается также, как и в варианте с металлическими трубами.

Можно также изготовить радиатор для солнечного коллектора из металлопластиковых труб. При этом их можно соединить с помощью фитингов, по той же схеме, что и ПП-трубы или же уложить зигзагами («змейкой») или в виде спирали. Второй вариант проще. Но необходимо помнить, что радиус изгиба металлопластиковых труб не должен быть меньше 7 диаметров трубы.

Вариант солнечного коллектора из металлопластиковых труб

Солнечный коллектор из радиатора холодильника

Если у вас есть радиатор от старого холодильника, то его тоже можно использовать для изготовления своими руками солнечного коллектора. Для этого необходимо его тщательно промыть, чтобы очистить от остатков фреона. Во время промывки следует также проверить его герметичность – нет ли протечек. Если они есть, эти места необходимо загерметизировать холодной сваркой или запаять.

Радиатор от старого холодильника

Сам радиатор необходимо покрасить черной матовой краской.

Необходимо предусмотреть также способ соединения входной и выходной трубок с накопительным баком гелиоустановки или другими элементами, в зависимости от ее вида. Для этого, например, можно припаять на концах трубок резьбу требуемого размера или натянуть резиновые шланги, закрепив их хомутами.

Подготовленный таким образом радиатор солнечного коллектора крепится с помощью хомутов в теплоизолированном коробе, изготовленном с учетом его размеров. Сам короб может быть изготовлен также, как и предыдущих случаях.

Воздушные солнечные коллекторы для отопления дома

Кроме вышеописанных солнечных коллекторов в которых с помощью солнечной энергии нагревается жидкость можно изготовить своими руками конструкции в которых нагревается воздух. Такой солнечный коллектор можно использовать для дополнительного отопления дома. Холодный воздух из помещения подается в его теплообменник, нагревается там и подается обратно в помещение.

Теплообменник для такой гелиоустановки может быть изготовлен из листового металла, тонкостенных металлических труб, а также даже из банок от пива или других напитков. Сами конструкции таких коллекторов мы рассмотрим в другой статье этой рубрики.

Как я сделал солнечный коллектор своими руками: Видео