Орбита Луны. Влияние Луны на Землю

Если бы вы смотрели на Луну в приближении по мере ее ускорения и замедления в процессе этого путешествия, вы также увидели бы, что она покачивается с севера на юг и с запада на восток в движении, известном как либрация. В результате этого движения мы видим часть сферы, которая обычно скрыта (порядка девяти процентов).

Впрочем, мы никогда не увидим другой 41%.

  1. Гелий-3 с Луны мог бы решить энергетические проблемы Земли

Солнечный ветер электрически заряжен и время от времени сталкивается с Луной и поглощается породами лунной поверхности. Один из наиболее ценных газов, которые имеются в этом ветре и которые поглощаются породами, это гелий-3, редкий изотоп гелия-4 (который обычно используется для воздушных шариков).

Гелий-3 отлично подойдет для удовлетворения нужд реакторов термоядерного синтеза с последующей генерацией энергии.

Сто тонн гелия-3 могли бы удовлетворить потребности Земли в энергии на год, если верить подсчетам Extreme Tech. Поверхности Луны содержит около пяти миллионов тонн гелия-3, тогда как на Земле его всего 15 тонн.

Идея такова: мы летим на Луну, добываем гелий-3 в шахте, набираем его в баки и отправляем на Землю. Правда, это может случиться очень нескоро.

  1. Есть ли доля правды в мифах о безумии полной луны?

На самом деле нет. Предположение, что мозг, один из самых водянистых органов человеческого тела, испытывает влияние луны, уходят корнями в легенды, которым несколько тысячелетий, еще во времена Аристотеля.

Поскольку гравитационное притяжение Луны управляет приливами земных океанов, а люди состоят на 60% из воды (и мозг на 73%), Аристотель и римский ученый Плиний Старший считали, что Луна должна оказывать похожий эффект на нас самих.

Эта идея породила термин «лунного безумия», «трансильванского эффекта» (который получил широкое распространение в Европе в период средневековья) и «лунного помешательства». Особого масла в огонь подлили фильмы 20 века, связавшие полную луну с психиатрическими расстройствами, автомобильными авариями, убийствами и другими происшествиями.

В 2007 году правительство британского приморского городка Брайтон распорядилось отправлять дополнительные полицейские патрули во время полнолуний (и в зарплатные дни тоже).

И все же наука говорит, что нет никакой статистической связи между поведением людей и полной луной, согласно нескольким исследованиям, одно из которых провели американские психологи Джон Роттон и Айвен Келли. Вряд ли Луна влияет на нашу психику, скорее она просто добавляет света, при котором удобно совершать преступления.

  1. Пропавшие лунные камни

В 70-х годах администрация Ричарда Никсона раздала камни, доставленные с лунной поверхности во время миссий «Аполлон-11» и «Аполлон-17», лидерам 270 стран.

К сожалению, более сотни таких камней оказались пропавшими без вести и, как предполагается, отправились на черный рынок. Работая в NASA в 1998 году, Джозеф Гутхайнц даже провел тайную операцию под названием «Лунное затмение», чтобы положить конец незаконной продаже этих камней.

С чего была вся эта шумиха? Кусочек лунного камня размером с горошину оценивался в 5 миллионов долларов на черном рынке.

  1. Луна принадлежит Деннису Хоупу

По крайней мере он так считает.

В 1980 году, используя лазейку в Договоре ООН о космической собственности 1967 года, согласно которому «ни одна страна» не может претендовать на Солнечную систему, житель Невады Деннис Хоуп написал в ООН и объявил о праве на частную собственность. Ему не ответили.

Но зачем ждать? Хоуп открыл лунное посольство и начал продавать одноакровые участки по 19,99 доллара за каждый. Для ООН является почти такой же, как мировые океаны: за пределами экономической зоны и принадлежащие каждому жителю Земли. Хоуп утверждал, что продал внеземную недвижимость знаменитостям и трем бывшим президентам США.

Непонятно, действительно Деннис Хоуп не понимает формулировки договора или же пытается вынудить законодательные силы сделать правовую оценку своих действий, чтобы разработка небесных ресурсов началась при более прозрачных правовых условиях.

Луна с незапамятных времен была постоянным спутником нашей планеты и самым близким к ней небесным телом. Естественно, человеку всегда хотелось там побывать. Но далеко ли туда лететь и какое до нее расстояние?

Расстояние от Земли до Луны теоретически измеряется от центра Луны до центра Земли. Измерить это расстояние обычными методами, используемыми в обычной жизни, невозможно. Поэтому дистанция до земного спутника вычислялась по тригонометрическим формулам.

Аналогично Солнцу, Луна испытывает постоянное движение на земном небе вблизи эклиптики. Тем не менее, это движение значительно отличается от движения Солнца. Так плоскости орбит Солнца и Луны различаются на 5 градусов. Казалось бы, вследствие этого траектория Луны на земном небе должна быть похожа в общих чертах на эклиптику, отличаясь от нее только сдвигом на 5 градусов:

В этом движение Луна напоминает движение Солнца – с запада на восток, в противоположном направлении суточному вращению Земли. Но кроме того Луна движется по земному небу гораздо быстрее Солнца. Это связано с тем, что Земля совершает оборот вокруг Солнца примерно за 365 суток (земной год), а Луна вокруг Земли всего за 29 суток (лунный месяц). Это различие и стало стимулом к разбивке эклиптики на 12 зодиакальных созвездий (за один месяц Солнце смещается по эклиптике на 30 градусов). За время лунного месяца происходит полная смена фаз Луны:

В дополнение к траектории движения Луны добавляется ещё и фактор сильной вытянутости орбиты. Эксцентриситет орбиты Луны составляет 0.05 (для сравнения у Земли этот параметр равен 0.017). Отличие от круговой орбиты Луны приводит к тому, что видимый диаметр Луны постоянно меняется от 29 до 32 угловых минут.

За сутки Луна смещается относительно звезд на 13 градусов, за час примерно на 0.5 градусов. Современные астрономы часто используют покрытия Луны для оценок угловых диаметров звезд вблизи эклиптики.

От чего зависит движение Луны

Важным моментом теории движения Луны является факт того, что орбита Луны в космическом пространстве не является неизменной и стабильной. По причине сравнительно небольшой массы Луны, она подвержена постоянным возмущениям от более массивных объектов Солнечной Системы (прежде всего Солнца и Луны). Кроме того, на орбиту Луны оказывают влияние сплюснутость Солнца и гравитационные поля других планет Солнечной Системы. В результате этого величина эксцентриситета орбиты Луны испытывает колебания между 0.04 и 0.07 с периодом в 9 лет. Следствием этих изменений стало такое явление, как суперлуние. Суперлунием называется астрономическое явление, в ходе которого полная луна в несколько раз больше по угловым размерам, чем обычно. Так во время полнолуния 14 ноября 2016 года Луна находилась на рекордно близком расстоянии с 1948 года. В 1948 году Луна была на 50 км ближе, чем в 2016 году.

Кроме того наблюдаются и колебания наклонения лунной орбиты к эклиптике: примерно на 18 угловых минут каждые 19 лет.

Чему равно

Космическим кораблям придется потратить на полет к земному спутнику немало времени. До Луны нельзя лететь по прямой – планета будет уходить по орбите в сторону от точки назначения, и путь придется корректировать. При второй космической скорости в 11 км/с (40 000 км/ч) полет теоретически займет около 10 часов, но на деле это будет происходить дольше. Все потому, что корабль на старте постепенно наращивает скорость в атмосфере, доводя ее до значения в 11 км/с, чтобы вырваться из поля тяготения Земли. Затем кораблю придется тормозить при подлете к Луне. Кстати, эта скорость- максимум, чего удалось добиться современным космическим кораблям.

Пресловутый полет американцев на Луну в 1969 году, согласно официальным данным, занял 76 часов. Быстрее всех до Луны удалось долететь аппарату НАСА «Новые горизонты» — за 8 часов 35 минут. Правда, он не приземлился на планетоид, а пролетел мимо – у него была другая миссия.

Свет от Земли до нашего спутника доберется очень быстро – за 1,255 секунд. Но полеты на световых скоростях – пока что из области фантастики.

Можно попытаться представить путь до Луны в привычных величинах. Пешком при скорости 5 км/ч дорога до Луны займет порядка девяти лет. Если поехать на машине на скорость в 100 км/ч, то добираться до земного спутника придется 160 дней. Если бы на Луну летали самолеты, то рейс до нее продлился бы где-то 20 дней.

Как в древней Греции астрономы рассчитывали расстояние до Луны

Луна стала первым небесным телом, до которого удалось рассчитать расстояние от Земли. Считается, что первыми это сделали астрономы в Древней Греции.

Измерить расстояние до Луны пытались с незапамятных времен – первым это попытался сделать Аристарх Самосский. Он оценил угол между Луной и Солнцем в 87 градусов, поэтому вышло, что Луна ближе Солнца в 20 раз (косинус угла равного 87 градуса равен 1/20). Ошибка измерений угла привела к 20-кратной ошибке, сегодня известно, что это отношение на самом деле равно 1 к 400 (угол равен примерно 89.8 градусов). Большая ошибка была вызвана трудностью оценок точного углового расстояния между Солнцем и Луной с помощью примитивных астрономических инструментов Древнего мира. Регулярные солнечные затмения к этому времени уже позволили древнегреческим астрономам сделать вывод о том, что угловые диаметры Луны и Солнца примерно одинаковы. В связи с этим Аристарх сделал вывод, что Луна меньше Солнца в 20 раз (на самом деле примерно в 400 раз).

Для вычисления размеров Солнца и Луны относительно Земли Аристарх использовал другой метод. Речь идет о наблюдениях лунных затмений. К этому времени древние астрономы уже догадались о причинах этих явлений: Луна затмевается тенью Земли.

На схеме выше хорошо видно, что разность расстояний с Земли до Солнца и до Луны пропорциональна разнице между радиусами Земли и Солнца и радиусами Земли и её тени на расстояние Луны. Во времена Аристарха уже удалось оценить, что радиус Луны равен примерно 15 угловым минутам, а радиус земной тени составляет 40 угловых минут. То есть размер Луны получался примерно в 3 раза меньше размера Земли. Отсюда зная угловой радиус Луны можно было легко оценить, что Луна находится от Земли примерно в 40 диаметрах Земли. Древние греки могли лишь приблизительно оценить размеры Земли. Так Эратосфен Киренский (276 – 195 годы до нашей эры) на основе различий в максимальной высоте Солнца над горизонтом в Асуане и Александрии во время летнего солнцестояния определил, что радиус Земли близок к 6287 км (современное значение 6371 км). Если подставить это значение в оценку Аристарха насчет расстояния до Луны, то оно будет соответствовать примерно 502 тысяч км (современное значение среднего расстояния от Земли до Луны составляет 384 тысяч км).

Чуть позже математик и астроном II века до н. э. Гиппарх Никейский подсчитал, что расстояние до земного спутника в 60 раз больше, чем радиус нашей планеты. Его расчеты основывались на наблюдениях за движением Луны и его периодических затмениях.

Так как в момент затмения Солнце и Луна будут иметь одинаковые угловые размеры, то по правилам подобия треугольников можно найти отношение расстояний до Солнца и до Луны. Эта разница составляет 400 раз. Применяя еще раз эти правила, только уже по отношению к диаметрам Луны и Земли, Гиппарх вычислил, что диаметр Земли больше диаметра Луны в 2,5 раза. Т.е R л = R з /2,5.

Под углом в 1′ можно наблюдать предмет, размеры которого в 3 483 раза меньше, чем расстояние до него – эта информация во времена Гиппарха была всем известна. То есть, при наблюдаемом радиусе Луны в 15′ она будет ближе к наблюдателю в 15 раз. Т.е. отношение расстояния до Луны к ее радиусу будет равно 3483/15= 232 или S л = 232R л.

Соответственно, дистанция до Луны – это 232* R з /2,5= 60 радиусов Земли. Это получается 6 371*60=382 260 км. Самое интересное, что измерения, выполненные при помощи современных инструментов, подтвердили правоту античного ученого.

Сейчас измерение дистанции до Луны проводится при помощи лазерных приборов, позволяющих измерить его с точностью до нескольких сантиметров. При этом измерения происходят за очень короткое время – не более 2 секунд, за которое Луна удаляется по орбите примерно на 50 метров от точки отправки лазерного импульса.

Эволюция методик измерения расстояния до Луны

Только с изобретением телескопа астрономы смогли получить более-менее точные значения параметров орбиты Луны и соответствия её размеров с размером Земли.

Более точный метод измерения расстояния до Луны появился в связи с развитием радиолокации. Первая радиолокация Луны была проведены в 1946 году в США и Великобритании. Радиолокация позволяла измерить расстояние до Луны с точностью в несколько километров.

Ещё более точным методом измерения расстояния до Луны стала лазерная локация. Для его реализации в 1960х годах на Луне было установлено несколько уголковых отражателей. Интересно отметить, что первые эксперименты по лазерной локации были проведены ещё до установки уголковых отражателей на поверхности Луны. В 1962-1963 годах в Крымской обсерватории СССР были проведены несколько экспериментов по лазерной локации отдельных лунных кратеров с использованием телескопов диаметром от 0.3 до 2.6 метров. Эти эксперименты смогли определять расстояние до поверхности Луны с точностью в несколько сотен метров. В 1969-1972 годы астронавты программы “Аполлон” доставили на поверхность нашего спутника три уголковых отражателя. Среди них наиболее совершенным был отражатель миссии “Апполон-15”, так как он состоял 300 призм, тогда как два других (миссии “Апполон-11” и “Апполон-14”) только из ста призм каждый.

Кроме того в 1970 и 1973 годах СССР доставил на поверхность Луны ещё два французских уголковых отражателя на борту самоходных аппаратов “Луноход-1” и “Луноход-2”, каждый из которых состоял из 14 призм. Использование первого из этих отражателей обладает незаурядной историей. За первые 6 месяцев работы лунохода с отражателем удалось провести около 20 сеансов лазерной локации. Однако затем из-за неудачного положения лунохода вплоть до 2010 года не удавалось использовать отражатель. Лишь снимки нового аппарата LRO помогли уточнить положение лунохода с отражателем, и тем самым возобновить сеансы работы с ним.

В СССР наибольшее количество сеансов лазерной локации было проведено на 2.6-метровом телескопе Крымской обсерватории. Между 1976 и 1983 годами на этом телескопе было проведено 1400 измерений с погрешностью в 25 сантиметров, затем наблюдения были прекращены в связи со свертыванием советской лунной программы.

Всего же с 1970 по 2010 годы в мире было проведено примерно 17 тысяч высокоточных сеансов лазерной локации. Большинство из них было связано с уголковым отражателем “Аполонна-15” (как говорилось выше, он является наиболее совершенным – с рекордным количеством призм):

Из 40 обсерваторий, способных выполнять лазерную локацию Луны лишь несколько могут выполнять высокоточные измерения:

Большинство сверхточных измерений выполнено на 2-метровом телескопе в техасской обсерватории имени Мак Дональда:

В то же время наиболее точные измерения выполняет инструмент APOLLO, который был установлен на 3.5-метровом телескопе обсерватории Апач Пойнт в 2006 году. Точность его измерений достигает одного миллиметра:

Эволюция системы Луна и Земля

Главной целью всё более точных измерений расстояния до Луны являются попытки более глубокого понимания эволюции орбиты Луны в далеком прошлом и в отдаленном будущем. К настоящему времени астрономы пришли к выводу, что в прошлом Луна находилась в несколько раз ближе к Земле, а так же обладала значительно более коротким периодом вращения (то есть не была приливно захваченной). Этот факт подтверждает импактную версию образования Луны из выброшенного вещества Земли, которая преобладает в наше время. Кроме того, приливное воздействие Луны приводит к тому, что скорость вращения Земли вокруг своей оси постепенно замедляется. Скорость этого процесса составляет увеличение земных суток каждый год на 23 микросекунды. За один год Луна отдаляется от Земли в среднем на 38 миллиметров. Оценивается, что в случае если система Земля-Луна переживет превращение Солнца в красный гигант, то через 50 миллиардов лет земные сутки сравняются с лунным месяцем. В результате Луна и Земля будут всегда повернуты к друг другу только одной стороной, как сейчас наблюдается в системе Плутон-Харон. К этому времени Луна отдалится до, примерно, 600 тысяч километров, а лунный месяц увеличится до 47 суток. Кроме того, предполагается, что испарение земных океанов через 2.3 миллиардов лет приведет к ускорению процесса удаления Луны (земные приливы значительно тормозят процесс).

Кроме того, расчеты показывают, что в дальнейшем Луна снова начнет сближаться с Землей по причине приливного взаимодействия с друг другом. При приближении к Земле на 12 тысяч км Луна будет разорвана приливными силами, обломки Луны образуют кольцо наподобие известных колец вокруг планет-гигантов Солнечной Системы. Другие известные спутники Солнечной Системы повторят эту судьбу гораздо раньше. Так Фобосу отводят 20-40 миллионов лет, а Тритону около 2 миллиардов лет.

Каждый год расстояние до земного спутника возрастает в среднем на 4 см. Причины – движение планетоида по спиральной орбите и постепенно падающая мощность гравитационного взаимодействия Земли и Луны.

Между Землей и Луной теоретически можно разместить все планеты Солнечной системы. Если сложить диаметры всех планет, включая Плутон, то получится величина в 382 100 км.

И даже в казалось бы давно устоявшихся теориях имеются вопиющие противоречия и очевидные ошибки , которые просто замалчиваются. Приведу простой пример.

Официальная физика, которую преподают в учебных заведениях, очень гордится тем, что ей известны соотношения между разными физическими величинами в виде формул, которые якобы надёжно подкреплены экспериментально. На том, как говорится, и стоим…

В частности, во всех справочниках и учебниках утверждается, что между двумя телами, имеющими массы (m ) и (M ), возникает сила притяжения (F ), которая прямо пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния (R ) между ними. Это соотношение обычно представляют в виде формулы «закона всемирного тяготения» :

где - гравитационная постоянная, равная примерно 6,6725×10 −11 м³/(кг·с²).

Давайте с помощью этой формулы подсчитаем, какова сила притяжения между Землёй и Луной, а также между Луной и Солнцем. Для этого нам нужно подставить в эту формулу соответствующие значения из справочников:

Масса Луны - 7,3477×10 22 кг

Масса Солнца - 1,9891×10 30 кг

Масса Земли - 5,9737×10 24 кг

Расстояние между Землёй и Луной = 380 000 000 м

Расстояние между Луной и Солнцем = 149 000 000 000 м

Сила притяжения между Землёй и Луной = 6,6725×10 -11 х 7,3477×10 22 х 5,9737×10 24 / 380000000 2 = 2,028×10 20 H

Сила притяжения между Луной и Солнцем = 6,6725×10 -11 х 7,3477·10 22 х 1,9891·10 30 / 149000000000 2 = 4,39×10 20 H

Получается, что сила притяжения Луны к Солнцу более чем вдвое (!) больше , чем сила притяжения Луны к Земле! Почему же тогда Луна летает вокруг Земли , а не вокруг Солнца? Где же здесь согласие теории с экспериментальными данными?

Если не верите своим глазам, пожалуйста, возьмите калькулятор, откройте справочники и убедитесь сами.

Согласно формуле «всемирного тяготения» для данной системы из трёх тел, как только Луна окажется между Землёй и Солнцем, она должна уйти с круговой орбиты вокруг Земли, превратившись в самостоятельную планету с параметрами орбиты, близкими к земной. Однако, Луна упорно «не замечает» Солнце, как будто его не существует вообще.

В первую очередь, давайте зададимся вопросом о том, что может быть неправильным в этой формуле? Вариантов здесь немного.

С точки зрения математики, данная формула может быть правильной, но тогда неправильными являются значения её параметров.

Например, современная наука может жестоко ошибаться в определении расстояний в космосе на основе ложных представлений о природе и скорости распространения света; или же неправильно оценивать массы небесных тел, пользуясь всё теми же чисто умозрительными заключениями Кеплера или Лапласа, выраженными в виде соотношений размеров орбит, скоростей и масс небесных тел; или же вообще не понимать природу массы макроскопического тела, о чём предельно откровенно повествуют все учебники физики, постулируя данное свойство материальных объектов, вне зависимости от его расположения и не углубляясь в причины его возникновения.

Также официальная наука может ошибаться в причине существования и принципах действия силы тяготения, что наиболее вероятно. Например, если массы не обладают притягивающим действием (чему, кстати говоря, имеются тысячи наглядных доказательств , только они замалчиваются), тогда эта «формула всемирного тяготения» просто отображает некую идею, высказанную Исааком Ньютоном, которая на поверку оказалась ложной .

Ошибиться можно тысячами разных способов, а вот истина - одна. И её официальная физика сознательно скрывает, иначе как объяснить отстаивание такой вот абсурдной формулы?

Первым и очевидным следствием того, что «формула всемирного тяготения» не работает, является тот факт, что у Земли отсутствует динамическая реакция на Луну . Проще говоря, два таких больших и близких небесных тела, одно из которых по диаметру всего вчетверо меньше от другого, должны были бы (согласно воззрениям современной физики) вращаться вокруг общего центра масс - т.н. барицентра . Однако, Земля вращается строго вокруг своей оси, и даже приливы и отливы в морях и океанах не имеют к положению Луны на небосводе ровным счётом никакого отношения.

С Луной связан целый ряд совершенно вопиющих фактов несоответствий с устоявшимися воззрениями классической физики, которые в литературе и Интернете стыдливо называются «лунными аномалиями» .

Самая очевидная аномалия - точнейшее совпадение периода обращения Луны вокруг Земли и вокруг своей оси, из-за чего она всегда обращена к Земле одной стороной. Существует множество причин, чтобы эти периоды всё больше рассинхронизировались на каждом витке Луны вокруг Земли.

Например, никто не станет утверждать, что Земля и Луна являются двумя идеальными шарами с равномерным распределением массы внутри. С точки зрения официальной физики совершенно очевидно, что на движение Луны существенное влияние должны оказывать не только взаимное расположение Земли, Луны и Солнца, но даже пролёты Марса и Венеры в периоды максимального сближения их орбит с земной. Опыт космических полётов на околоземной орбите показывает, что достичь стабилизации по типу лунной можно только в том случае, если постоянно подруливать микродвигателями ориентации. Но чем и как подруливает Луна? И главное - для чего?

Эта «аномалия» выглядит ещё более обескураживающе на фоне того малоизвестного факта, что официальная наука до сих пор не выработала приемлемого объяснения траектории , по которой Луна движется вокруг Земли. Орбита Луны отнюдь не круговая и даже не эллиптическая. Странная кривая , которую Луна описывает над нашими головами, согласуется всего лишь с длинным списком статистических параметров, изложенных в соответствующих таблицах .

Эти данные собраны на основе многолетних наблюдений, но отнюдь не на базе каких-либо расчётов . Именно благодаря этим данным можно предсказать те или иные события с большой точностью, например, солнечные или лунные затмения, максимальное приближение или удаление Луны относительно Земли и т.д.

Так вот, именно на этой странной траектории Луна ухитряется всё время быть развёрнутой к Земле только одной стороной!

Конечно же, это далеко не всё.

Оказывается, Земля двигается по орбите вокруг Солнца отнюдь не с равномерной скоростью , как хотелось бы официальной физике, а делает небольшие притормаживания и рывки вперёд по направлению своего движения, которые синхронизированы с соответствующим положением Луны. Однако, никаких движений в стороны, перпендикулярные к направлению своей орбиты, Земля не делает, несмотря на то, что Луна может находиться с любой стороны от Земли в плоскости своей орбиты.

Официальная физика не только не берётся описать или объяснить эти процессы - она о нихпросто умалчивает ! Такой полумесячный цикл рывков земного шара отлично коррелирует со статистическими пиками землетрясений , но где и когда вы об этом слышали?

А знаете ли вы, что в системе космических тел Земля-Луна не существует никаких точек либрации , предсказанных Лагранжем на основе закона «всемирного тяготения»?

Дело в том, что область тяготения Луны не превышает расстояния 10 000 км от её поверхности. Этому факту имеется множество очевиднейших подтверждений. Достаточно вспомнить о геостационарных спутниках, на которые положение Луны не влияет никак, или научно-сатирическую историю с зондом «Смарт-1» от ЕКА , с помощью которого собирались между делом сфотографировать места прилунения «Аполлонов » ещё в 2003-2005 годах.

Зонд «Смарт-1» был создан как экспериментальный космический аппарат с двигателями на малой ионной тяге, но с огромным временем работы. Миссией ЕКА предусматривался постепенный разгон аппарата, выведенного на круговую орбиту вокруг Земли с тем, чтобы, двигаясь по спиралевидной траектории с набором высоты, достичь внутренней точки либрации системы Земля-Луна. Согласно предсказаниям официальной физики, начиная с этого момента, зонд должен был изменить свою траекторию, перейдя на высокую окололунную орбиту, и начать длительный манёвр торможения, постепенно сужая спираль вокруг Луны.

Но всё было бы хорошо, если бы официальная физика и расчёты, сделанные с её помощью, соответствовали реальности . В действительности , после достижения точки либрации, «Смарт-1» продолжал полёт по раскручивающейся спирали, и на следующих витках даже не думал реагировать на приближающуюся Луну.

С этого момента вокруг полёта «Смарта-1» начался удивительный заговор молчания и откровенной дезинформации, пока траектория его полёта не позволила, наконец, просто разбить его о поверхность Луны, о чём официозные научно-популяризаторские Интернет-ресурсы поспешили сообщить под соответствующим информационным соусом как о великом достижении современной науки, которая вдруг решила «изменить» миссию аппарата и со всего маху хряснуть десятками миллионов потраченных на проект валютных денег о лунную пыль.

Естественно, на последнем витке своего полёта зонд «Смарт-1» вошёл наконец в область тяготения Луны, однако он никак не смог бы сбросить скорость для выхода на низкую окололунную орбиту с помощью своего маломощного двигателя. Расчёты европейских баллистиков вошли в разительное противоречие с реальной действительностью.

И такие случаи при исследованиях дальнего космоса отнюдь не единичны, а повторяются с завидной постоянностью, начиная от первых проб попадания в Луну или отправки зондов к спутникам Марса, заканчивая последними попытками выйти на орбиты вокруг астероидов или комет, сила притяжения у которых полностью отсутствует даже на их поверхности.

Но тогда у читателя должен возникнуть совершенно закономерный вопрос: как же ракетно-космическая отрасль СССР в 60-х и 70-х годах ХХ века ухитрилась исследовать Луну с помощью автоматических аппаратов, пребывая в плену ложных научных воззрений? Как советские баллистики рассчитали правильную трассу полёта к Луне и обратно, если одна из самых базовых формул современной физики оказывается фикцией? Наконец, как в ХХI веке рассчитывают орбиты лунных спутников-автоматов, производящих близкое фотографирование и сканирование Луны?

Очень просто! Как и во всех других случаях, когда практика показывает расхождение с физическими теориями, в дело вступает его величество Опыт , который подсказывает правильное решение той или иной проблемы . После череды совершенно закономерных неудач, эмпирическим образом баллистики нашли некие поправочные коэффициенты для тех или иных этапов полётов к Луне и другим космическим телам, которые вводят в бортовые компьютеры современных автоматических зондов и систем космической навигации.

И всё работает! Но главное, появляется возможность протрубить на весь мир об очередной победе мировой науки, и далее учить легковерных детей и студентов формуле «всемирного тяготения», которая к реальной действительности имеет отношение не большее, чем треуголка барона Мюнхгаузена к его эпическим подвигам.

И если вдруг некий изобретатель выступит с очередной идеей нового способа передвижения в космосе, нет ничего проще, чем объявить его шарлатаном на том простом основании, что его расчёты противоречат той же пресловутой формуле «всемирного тяготения»… Комиссии по борьбе с лженаукой при академиях наук разных стран работают, не покладая рук.

Это тюрьма , товарищи. Большая планетарная тюрьма с лёгким налётом наукообразности для нейтрализации особо ретивых особей, посмевших быть умными. Остальных достаточно женить, чтобы, следуя меткому замечанию Карела Чапека, у них автобиография закончилась…

Кстати, все параметры траекторий и орбит «пилотируемых полётов» от НАСА к Луне в 1969-1972 годах рассчитаны и опубликованы именно на основании допущений о существовании точек либрации и о выполнении закона всемирного тяготения для системы Земля-Луна. Разве только одно это не объясняет, почему все программы пилотируемого покорения Луны после 70-х годов ХХ века были свёрнуты ? Что легче: тихо съехать с темы или признаваться в фальсификации всей физики?

Наконец, у Луны имеется целый ряд удивительных феноменов, называемых «оптическими аномалиями» . Эти аномалии уже настолько не лезут ни в какие ворота официальной физики, что о них предпочитается полностью умалчивать, заменяя интерес к ним на якобы постоянно регистрируемую активность НЛО на поверхности Луны.

С помощью выдумок жёлтой прессы, поддельных фото- и видеоматериалов о якобы постоянно перемещающихся над Луной летающих тарелках и громадных сооружениях инопланетян на её поверхности, закулисные хозяева пытаются покрывать информационным шумом действительно фантастическую реальность Луны , о которой обязательно следует упомянуть в этой работе.

Самая очевидная и наглядная оптическая аномалия Луны видна всем землянам невооружённым взглядом, поэтому остаётся только удивляться тому, что практически никто на это не обращает внимания. Посмотрите, как выглядит Луна в чистом ночном небе в моменты полнолуния? Она выглядит, как плоское круглое тело (например, монета), но не как шар !

Шарообразное тело с довольно существенными неровностями на своей поверхности, в случае его освещения источником света, находящегося сзади от наблюдателя, должно в наибольшей степени отсвечивать ближе к своему центру, а по мере приближения к краю шара, светимость должна плавно уменьшаться.

Об этом вопиет наверное самый известный закон оптики, который звучит так: «Угол падения луча равен углу его отражения». Но на Луну это правило отнюдь не распространяется. В силу непонятных для официальной физики причин, лучи света, попадающие в край лунного шара, отражаются… назад к Солнцу, отчего мы видим Луну в полнолуние как некую монету, но не как шар.

Ещё большую сумятицу в умы вносит не менее очевидная наблюдаемая вещь - постоянное значение уровня светимости освещённых участков Луны для наблюдателя с Земли. Проще говоря, если предположить, что у Луны имеется некое свойство направленного рассеяния света, то приходится признать, что отражение света меняет свой угол в зависимости от положения системы Солнце-Земля-Луна. Никто не сможет оспорить тот факт, что даже узкий серп молодой Луны даёт светимость точно такую же, как и соответствующий ему по площади центральный участок половинной Луны. А это означает, что Луна каким-то образом управляет углом отражения солнечных лучей, чтобы они всегда отражались от её поверхности именно к Земле!

Но когда наступает полнолуние, светимость Луны скачкообразно увеличивается . Это означает, что поверхность Луны удивительным образом расщепляет отражённый свет на два основных направления - к Солнцу и Земле. Отсюда следует другой ошеломительный вывод о том, что Луна является практически невидимой для наблюдателя из космоса , который находится не на прямых отрезках Земля-Луна или Солне-Луна. Кому и зачем понадобилось прятать Луну в космосе в оптическом диапазоне?…

Чтобы понять, в чём прикол, в советских лабораториях потратили уйму времени на оптические эксперименты с лунным грунтом, доставленным на Землю автоматическими аппаратами «Луна-16», «Луна-20» и «Луна-24». Однако, параметры отражения света, в том числе солнечного, от лунного грунта вполне вписывались во все известные каноны оптики. Лунный грунт на Земле вовсе не хотел показывать тех чудес, которые мы видим на Луне. Выходит, что материалы на Луне и на Земле ведут себя по-разному ?

Вполне возможно. Ведь неокисляемую плёнку толщиной в несколько атомов железа на поверхности любых предметов, насколько мне известно, в земных лабораториях так до сих пор и не удалось получить…

Масла в огонь подлили фотографии с Луны, переданные советскими и американскими автоматами, которые удалось посадить на её поверхность. Представьте себе удивление тогдашних учёных, когда все фотографии на Луне получались строго чёрно-белые - без единого намёка на такой привычный для нас радужный спектр.

Если бы фотографировался только лунный пейзаж, равномерно усыпанный пылью от взрывов метеоритов , это ещё как-то можно было бы понять. Но чёрно-белой получалась дажекалибровочная цветная пластинка на корпусе посадочного аппарата! Любой цвет на поверхности Луны превращается в соответствующую градацию серого, что беспристрастно фиксируют все фотографии поверхности Луны, передаваемые автоматическими аппаратами разных поколений и миссий по сегодняшний день.

Теперь представьте, в какой глубокой… луже сидят американцы с их бело-сине-красными звёздно-полосатыми флагами, якобы сфотографированными на поверхности Луны доблестными астронавтами-«первопроходимцами».

(Кстати, их цветные картинки и видеозаписи свидетельствуют о том, что американцы вообще туда ничего ни разу не посылали! - Ред .).

Скажите, вы бы на их месте сильно старались возобновить исследования Луны и попасть на её поверхность хоть с помощью какого-нибудь «пендосохода», зная, что изображения или видеоролики получатся только черно-белыми? Разве что оперативно их раскрашивать, как старые фильмы… Но, чёрт возьми, в какие цвета красить куски скал, местные камни или крутые склоны гор!?.

Кстати говоря, очень похожие проблемы поджидали НАСА и на Марсе. Всем исследователям уже наверняка набила оскомину мутная история с несоответствием цветов, точнее говоря, с явным сдвигом всего марсианского видимого спектра на его поверхности в красную сторону. Когда работников НАСА подозревают в намеренном искажении изображений с Марса (якобы скрывающих голубое небо, зелёные ковры лужаек, синеву озёр, ползающих местных жителей…), я призываю вспомнить Луну…

Подумайте, может на разных планетах просто действуют разные физические законы ? Тогда очень многое сразу встаёт на свои места!

Но вернёмся пока к Луне. Давайте закончим с перечнем оптических аномалий, а потом примемся за следующие разделы Лунных чудес.

Луч света, проходящий вблизи поверхности Луны, получает существенные разбросы по направлению, из-за чего современная астрономия не может даже вычислить время, потребное для покрытия звёзд телом Луны.

Никаких идей, почему такое происходит, официальная наука не высказывает, кроме отвязно-бредовых в стиле электростатических причин перемещения лунной пыли на больших высотах над её поверхностью или деятельности неких лунных вулканов, как нарочно выбрасывающих преломляющую свет пыль точно в том месте, где ведётся наблюдение за данной звездой. А так, вообще-то, лунных вулканов пока никто не наблюдал.

Как известно, земная наука умеет собрать информацию о химическом составе удалённых небесных тел за счёт изучения молекулярных спектров излучения-поглощения. Так вот, для самого близкого к Земле небесного тела - Луны - такой способ определения химического состава поверхности не проходит ! Лунный спектр практически лишён полос, могущих дать информацию о составе Луны .

Единственная достоверная информация о химическом составе лунного реголита получена, как известно, при изучении проб, взятых советскими «Лунами». Но даже теперь, когда есть возможность сканировать поверхность Луны с низкой окололунной орбиты с помощью автоматических аппаратов, сообщения о нахождении той или иной химической субстанции на её поверхности носят крайне противоречивый характер. Даже по Марсу - и то информации значительно больше.

И ещё об одной удивительной оптической особенности поверхности Луны. Это свойство является следствием уникального обратного рассеяния света, с которого я начал рассказ об оптических аномалиях Луны. Итак, практически весь падающий на Луну свет отражается в сторону Солнца и Земли.

Давайте вспомним, что ночью , при соответствующих условиях, мы можем прекрасно видеть неосвещённую Солнцем часть Луны, которая в принципе должна быть совершенно чёрной, если бы не… вторичное освещение Земли! Земля, будучи освещаемой Солнцем, отражает часть солнечного света в сторону Луны. И весь этот свет, который освещает теневую часть Луны, возвращается назад на Землю !

Отсюда совершенно логично предположить, что на поверхности Луны, даже на освещённой Солнцем стороне, всё время царят сумерки . Данная догадка великолепно подтверждается фотографиями лунной поверхности, сделанными советскими луноходами. Посмотрите при случае на них внимательно; на все, которые удастся добыть. Они сделаны при прямом солнечном освещении без влияния искажений атмосферы, но выглядят так, как будто в земных сумерках подтянули контрастность чёрно-белой картинки.

В таких условиях тени от предметов на поверхности Луны должны быть абсолютно чёрными, подсвечиваемые только ближайшими звёздами и планетами, уровень освещения от которых на много порядков ниже от солнечного. Это означает, что увидеть предмет, находящийся на Луне в тени, не представляется возможным с помощью любых известных оптических средств.

Для подведения краткого итога оптическим феноменам Луны, предоставим слово независимому исследователю А.А. Гришаеву , автору книги о «цифровом» физическом мире , который, развивая свои идеи, в очередной статье указывает:

«Учёт факта наличия этих феноменов предоставляет новые, убийственные аргументы в поддержку тех, кто считает подделками кино- и фотоматериалы, которые якобы свидетельствуют о пребывании американских астронавтов на поверхности Луны. Ведь мы даём ключи для проведения простейшей и беспощадной независимой экспертизы.

Если нам демонстрируют на фоне залитых солнечным светом (!) лунных пейзажей астронавтов, на скафандрах которых нет чёрных теней с противосолнечной стороны, или неплохо освещённую фигуру астронавта в тени «лунного модуля», или цветные (!) кадры с колоритной передачей цветов американского флага, то это всё неопровержимые улики, кричащие о фальсификации .

Фактически, нам неизвестно ни одного кино- или фотодокумента, изображающего астронавтов на Луне при настоящем лунном освещении и с настоящей лунной цветовой «палитрой».

И тут же продолжает:

«Слишком аномальны физические условия на Луне, и нельзя исключить, что окололунное пространство губительно для земных организмов. На сегодня нам известна единственная модель, объясняющая короткодействие лунного тяготения, а заодно и происхождение сопутствующих аномальных оптических феноменов - это наша модель «зыбкого пространства» .

И если эта модель верна, то вибрации «зыбкого пространства» ниже некоторой высоты над поверхностью Луны вполне способны разрывать слабые связи в молекулах белков - с разрушением их третичной и, возможно, вторичной структур.

Насколько нам известно, из окололунного пространства живыми вернулись черепашки на борту советского аппарата «Зонд-5», который произвёл облёт Луны с минимальным удалением от её поверхности примерно в 2000 км. Возможно, что при более близком к Луне прохождении аппарата, животные погибли бы в результате денатурации белков в их организмах. Если от космической радиации защититься весьма сложно, но всё-таки возможно, то от вибраций «зыбкого пространства» физической защиты нет…»

Приведённый отрывок лишь малая часть работы, с оригиналом которой я настоятельно рекомендую ознакомится на сайте автора

А ещё мне нравится, что лунную экспедицию пересняли в хорошем качестве. А то и правда, смотреть было противно. Всё-таки 21 век. Так что встречайте, в качестве HD «Катания на санях на масленицу».

Естественным спутником Земли является Луна — несветящееся тело, которое отражает солнечный свет.

Изучение Луны началось в 1959 г., когда советский аппарат «Луна-2» впервые сел на Луну, а с аппарата «Луна-3» впервые были сделаны из космоса снимки обратной стороны Луны.

В 1966 г. аппарат «Луна-9» совершил посадку на Луну и установил прочную структуру грунта.

Первыми, кто побывал на Луне, стали американцы Нейл Армстронг и Эдвин Олдрин. Это произошло 21 июля 1969 г. Советские ученые для дальнейшего изучения Луны предпочли использовать автоматические аппараты — луноходы.

Общие характеристики Луны

Средняя удаленность от Земли, км

  • а. е.
  • 363 104
  • 0,0024
  • а. е.
  • 405 696
  • 0,0027

Среднее расстояние между центрами Земли и Луны, км

Наклон орбиты к плоскости ее орбиты

Средняя орбитальная скорость

  • 1,022

Средний радиус Луны, км

Масса, кг

Экваториальный радиус, км

Полярный радиус, км

Средняя плотность, г/см 3

Наклон к экватору, град.

Масса Луны составляет 1/81 массы Земли. Положение Луны на орбите соответствует той или иной фазе (рис. 1).

Рис. 1. Фазы Луны

Фазы Луны — различные положения относительно Солнца — новолуние, первая четверть, полнолуние и последняя четверть. В полнолуние виден освещенный диск Луны, так как Солнце и Луна находятся на противоположных сторонах от Земли. В новолуние Луна находится на стороне Солнца, поэтому сторона Луны, обращенная к Земле, не освещается.

К Земле Луна обращена всегда одной стороной.

Линию, которая отделяет освещенную часть Луны от неосвещенной, называют терминатором.

В первой четверти Луна видна на угловом расстоянии 90" от Солнца, и солнечные лучи освещают лишь правую половину обращенной к нам Луны. В остальных фазах Луна видна нам в виде серпа. Поэтому, чтобы отличить растущую Луну от старой, надо помнить: старая Луна напоминает букву «С», а если Луна растущая, то можно мысленно перед Луной провести вертикальную линию и получится буква «Р».

Из-за близости Луны к Земле и ее большой массы они образуют систему «Земля-Луна». Луна и Земля вращаются вокруг своих осей в одну сторону. Плоскость орбиты Луны наклонена к плоскости орбиты Земли под углом 5°9".

Места пересечения орбит Земли и Луны называют узлами лунной орбиты.

Сидерический (от лат. сидерис — звезда) месяц — это период вращения Земли вокруг своей оси и одинакового положения Луны на небесной сфере по отношению к звездам. Он составляет 27,3 земных суток.

Синодическим (от греч. синод — соединение) месяцем называют период полной смены лунных фаз, т. е. период возвращения Луны в первоначальное положение относительно Луны и Солнца (например, от новолуния до новолуния). Он составляет в среднем 29,5 земных суток. Синодический месяц на двое суток длиннее сидерического, так как Земля и Луна вращаются вокруг своих осей в одну сторону.

Сила тяжести на Луне в 6 раз меньше силы тяжести на Земле.

Рельеф спутника Земли хорошо изучен. Видимые темные участки на поверхности Луны названы «морями» — это обширные безводные низменные равнины (самая крупная — «Оксан Бурь»), а светлые участки — «материками» — это гористые, возвышенные участки. Основные же планетарные структуры лунной поверхности — кольцевые кратеры диаметром до 20-30 км и многокольцевые цирки диаметром от 200 до 1000 км.

Происхождение у кольцевых структур различное: метеоритное, вулканическое и ударно-взрывное. Кроме этого, на поверхности Луны имеются трещины, сдвиги, купола и системы разломов.

Исследования космических аппаратов «Луна-16», «Луна-20», «Луна-24» показали, что поверхностные обломочные породы Луны сходны с земными магматическими породами — базальтами.

Значение Луны в жизни Земли

Хотя масса Луны в 27 млн раз меньше массы Солнца, она в 374 раза ближе к Земле и оказывает на нес сильное влияние, вызывая поднятия воды (приливы) в одних местах и отливы в других. Это происходит каждые 12 ч 25 мин, так как Луна делает полный оборот вокруг Земли за 24 ч 50 мин.

Из-за гравитационного воздействия Луны и Солнца на Землю возникают приливы и отливы (рис. 2).

Рис. 2. Схема возникновения приливов и отливов на Земле

Наиболее отчетливы и важны по своим следствиям прилив- но-отливные явления в волной оболочке. Они представляют собой периодические подъемы и опускания уровня океанов и морей, вызываемые силами притяжения Луны и Солнца (в 2,2 раза меньше лунной).

В атмосфере приливно-отливные явления проявляются в полусуточных изменениях атмосферного давления, а в земной коре — в деформации твердого вещества Земли.

На Земле наблюдаются 2 прилива в ближайшей и удаленной от Луны точке и 2 отлива в точках, находящихся на угловом расстоянии 90° от линии Луна — Земля. Выделяют сигизийные приливы, которые возникают в новолуние и полнолуние и квадратурные — в первой и последней четверти.

В открытом океане приливно-отливные явления невелики. Колебания уровня воды достигает 0,5-1 м. Во внутренних морях (Черное, Балтийское и др.) они почти не ощущаются. Однако в зависимости от географической широты и очертаний береговой линии материков (особенно в узких заливах) вода во время приливов может подниматься до 18 м (залив Фанди в Атлантическом океане у берегов Северной Америки), 13 м на западном побережье Охотского моря. При этом образуются приливно-отливные течения.

Основное значение приливных волн заключается в том, что, перемешаясь с востока на запад вслед за видимым движением Луны, они тормозят осевое вращение Земли и удлиняют сутки, изменяют фигуру Земли с помощью уменьшения полярного сжатия, вызывают пульсацию оболочек Земли, вертикальные смещения земной поверхности, полусуточные изменения атмосферного давления, изменяют условия органической жизни в прибрежных частях Мирового океана и, наконец, влияют на хозяйственную деятельность приморских стран. В целый ряд портов морские суда могут заходить только во время прилива.

Через определенный промежуток времени на Земле повторяются солнечные и лунные затмения. Увидеть их можно, когда Солнце, Земля и Луна находятся на одной линии.

Затмение — астрономическая ситуация, при которой одно небесное тело заслоняет свет от другого небесного тела.

Солнечное затмение происходит, когда Луна попадает между наблюдателем и Солнцем и загораживает его. Поскольку Луна перед затмением обращена к нам неосвещенной стороной, перед затмением всегда бывает новолуние, т. е. Луна не видна. Создается впечатление, что Солнце закрывается черным диском; наблюдающий с Земли видит это явление как солнечное затмение (рис. 3).

Рис. 3. Солнечное затмение (относительные размеры тел и расстояния между ними условны)

Лунное затмение наступает, когда Луна, находясь на одной прямой с Солнцем и Землей, попадает в конусообразную тень, отбрасываемую Землей. Диаметр пятна тени Земли равен минимальному расстоянию Луны от Земли — 363 000 км, что составляет около 2,5 диаметра Луны, поэтому Луна может быть затенена целиком (см. рис. 3).

Лунные ритмы — это повторяющиеся изменения интенсивности и характера биологических процессов. Существуют лунно-месячные (29,4 сут) и лунно-суточные (24,8 ч) ритмы. Многие животные, растения размножаются в определенную фазу лунного цикла. Лунные ритмы свойственны многим морским животным и растениям прибрежной зоны. Так, у людей замечено изменение самочувствия в зависимости от фаз лунного цикла.

Луна - единственное небесное тело, которое обращается вокруг Земли, если не считать искусственных спутников Земли, созданных человеком за последние годы.

Луна непрерывно перемещается по звездному небу и по отношению к какой-нибудь звезде за сутки смещается навстречу суточному вращению неба приблизительно на 13°, а через 27,1/3 суток возвращается к тем же звездам, описав по небесной сфере полный круг. Поэтому промежуток времени, в течение которого Луна совершает полный оборот вокруг Земли по отношению к звездам, называется звездным (или сидерическим ) месяцем; он составляет 27,1/3 суток. Луна движется вокруг Земли по эллиптической орбите, поэтому расстояние от Земли до Луны изменяется почти на 50 тыс. км. Среднее расстояние от Земли до Луны принимают равным 384 386 км (округленно - 400 000 км). Это в десять раз больше длины экватора Земли.

Луна сама не излучает света, поэтому на небе видна только освещенная Солнцем ее поверхность- дневная сторона. Ночная же, темная, не видна. Перемещаясь по небу с запада на восток, Луна за 1 ч сдвигается на фоне звезд примерно на пол градуса, т. е. на величину, близкую к ее видимому размеру, а за сутки-на 13º. ЗА месяц Луна на небе догоняет и перегоняет Солнце, при этом происходит смена лунных фаз: новолуние , первая четверть , полнолуние и последняя четверть .

В новолуние Луну не разглядеть даже в телескоп. Она располагается в том же направлении, что и Солнце (только выше или ниже его), и повернута к Земле ночным полушарием. Через два дня, когда Луна удалится от Солнца, узкий серп можно увидеть за несколько минут до ее захода в западной стороне неба на фоне вечерней зари. Первое появление лунного серпа после новолуния греки называли «неомения» («новая Луна»), С этого момента начинается лунный месяц.

Через 7 суток 10 ч после новолуния наступает фаза называемая первой четвертью . За это время Луна удалилась от Солнца на 90º. С Земли видна только правая половина лунного диска, освещенная Солнцем. После захода Солнца Луна находится в южной стороне неба и заходит около полуночи. Продолжая перемещаться от Солнца все левее. Луна с вечера оказывается уже на восточной стороне неба. Заходит она уже после полуночи, с каждым днем все позднее и позднее.

Когда Луна оказывается в стороне, противоположной Солнцу (на угловом расстоянии 180 от него), наступает полнолуние . С момента новолуния прошло 14 суток 18 ч. После этого Луна начинает приближаться к Солнцу справа.

Происходит уменьшение освещения правой части лунного диска. Угловое расстояние между ней и Солнцем уменьшается от 180 до 90º. Опять видна только половина лунного диска, но уже левая его часть. После новолуния прошло 22 дня 3 ч. Наступила последняя четверть . Луна восходит около полуночи и светит в течение всей второй половины ночи, к восходу Солнца оказываясь в южной стороне неба.

Ширина лунного серпа продолжает уменьшаться, а сама Луна постепенно приближается к Солнцу с правой (западной) стороны. Появляясь на восточном небосклоне, с каждыми сутками все позднее, лунный серп становится совсем узким, но рогами повернут вправо и похож на букву «С».

Говорят, Луна старая. Виден пепельный свет на ночной части диска. Угловое расстояние между Луной и Солнцем уменьшается до 0º. Наконец, Луна догоняет Солнце и снова становится невидимой. Наступает следующее новолуние. Лунный месяц закончился. Прошло 29 дней 12 ч 44 мин 2,8 с, или почти 29,53 суток. Этот период называется синодическим месяцем (от греч. sy" nodos-соединение, сближение).

Синодический период связан с видимым на небе расположением небесного тела относительно Солнца. Лунный синодический месяц -это промежуток времени между последовательными одноименными фазами Луны.

Свой путь на небе относительно звезд Луна совершает за 27 суток 7 ч 43 мин 11,5 с (округленно - 27,32 суток). Этот период называется сидерическим (от лат. sideris-звезда), или звездным месяцем .

№7 Затмение Луны и Солнца, их анализ.

Солнечные и лунные затмения - интереснейшее явление природы, знакомое человеку с древнейших времен. Они бывают сравнительно часто, но видны не из всех местностей земной поверхности и поэтому многим кажутся редкими.

Солнечное затмение происходит, когда наш естественный спутник - Луна - в своем движении проходит на фоне диска Солнца. Это всегда происходит в момент новолуния. Луна расположена ближе к Земле, чем Солнце, почти в 400 раз, и в тоже время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Земли и Солнца почти одинаковые, и Луна может закрыть собою Солнце. Но не каждое новолуние происходит солнечное затмение. Из-за наклона орбиты Луны к земной орбите Луна обычно немного "промахивается" и проходит выше или ниже Солнца в момент новолуния. Однако не менее 2-х раз в году (но не более пяти) тень Луны падает на Землю и происходит солнечное затмение.

Лунная тень и полутень падают на Землю в виде овальных пятен, которые со скоростью 1 км. в сек. пробегают по земной поверхности с запада на восток. В районах, оказавшихся в лунной тени видно полное солнечное затмение, то есть Солнце полностью закрыто Луной. В местностях, покрытых полутенью происходит частное солнечное затмение, то есть Луна закрывает лишь часть солнечного диска. За границей полутени затмения вообще не происходит.

Наибольшая продолжительность полной фазы затмения не превышает 7 мин. 31 сек. Но чаще всего это две - три минуты.

Солнечное затмение начинается с правого края Солнца. Когда Луна полностью закроет Солнце наступает полумрак, как в темные сумерки, и на потемневшем небе появляются самые яркие звезды и планеты, а вокруг Солнца видно красивое лучистое сияние жемчужного цвета - солнечная корона, представляющая собой внешние слои солнечной атмосферы, не видимые вне затмения из-за их небольшой яркости в сравнении с яркостью дневного неба. Вид короны из года в год меняется в зависимости от солнечной активности. Над всем горизонтом вспыхивает розовое заревое кольцо - это в местность, покрытую лунной тенью проникает солнечный свет из соседних зон, где полного затмения не происходит, а наблюдается только частное.
СОЛНЕЧНЫЕ И ЛУННЫЕ ЗАТМЕНИЯ

Солнце, Луна и Земля в стадии новолуния и полнолуния редко лежат на одной линии, т.к. лунная орбита лежит не точно в плоскости эклиптики, а под наклоном к ней в 5 градусов.

Солнечные затмения новолуния . Луна загораживает от нас Солнце.

Лунные затмения . Солнце, Луна и Земля лежат на одной линии в стадии полнолуния . Земля загораживает Луну от Солнца. Луна при этом становится кирпично-красной.

Каждый год в среднем происходит по 4 солнечных и лунных затмения. Они всегда сопровождают друг друга. Скажем, если новолуние совпадает с солнечным затмением, то лунное затмение наступает через две недели, в фазе полнолуния.

Астрономически солнечные затмения происходят, когда Луна при своем движении вокруг Солнца полностью или частично заслоняет Солнце. Видимые диаметры Солнца и Луны почти одинаковы, поэтому Луна заслоняет Солнце полностью. Но видно это с Земли в полосе полной фазы. По обе стороны полосы полной фазы наблюдается частное солнечное затмение.

Ширина полосы полной фазы солнечного затмения и его продолжительность зависят от взаимных расстояний Солнца, Земли и Луны. В следствии изменения расстояний видимый угловой диаметр Луны тоже меняется. Когда он чуть больше солнечного, полное затмение может длиться до 7,5 мин, когда равен, то одно мгновение, если же он меньше, то Луна вообще не закрывает Солнца полностью. В последнем случае происходит кольцеобразное затмение: вокруг темного лунного диска видно узкое яркое солнечное кольцо.

Во время полного солнечного затмения Солнце имеет вид черного диска, окруженного сиянием (короной). Дневной свет настолько ослабевает, что иногда можно видеть на небе звезды.

Полное лунное затмение происходит, когда Луна попадает в конус земной тени.

Полное лунное затмение может длиться 1,5-2 часа. Его можно наблюдать со всего ночного полушария Земли, где Луна в момент затмения находилась над горизонтом. Поэтому в данной местности полные лунные затмения удается наблюдать значительно чаще солнечных.

Во время полного лунного затмения Луны лунный диск остается видимым, но приобретает темно-красный оттенок.

Солнечное затмение происходит в новолуние, а лунное - в полнолуние. Чаще всего в году бывает два лунных и два солнечных затмения. Максимально возможное число затмений - семь. Через определенный промежуток времени лунные и солнечные затмения повторяются в том же порядке. Этот промежуток был назван саросом, что в переводе с египетского означает - повторение. Сарос составляет примерно 18 лет, 11 дней. В течении каждого сароса происходит 70 затмений, из них 42 солнечных и 28 лунных. Полные солнечные затмения с определенной местности наблюдаются реже, чем лунные, один раз в 200-300 лет.

УСЛОВИЯ ДЛЯ ЗАТМЕНИЯ СОЛНЦА

Во время солнечного затмения между нами и Солнцем проходит Луна и скрывает его от нас. Рассмотрим подробнее условия, при которых может наступить затмение Солнца.

Наша планета Земля, вращаясь в течение суток вокруг своей оси, одновременно движется вокруг Солнца и за год делает полный оборот. У Земли есть спутник - Луна. Луна движется вокруг Земли, и полный оборот совершает за 29 1/2 суток.

Взаимное расположение этих трех небесных тел все время меняется. При своем движении вокруг Земли Луна в определенные периоды времени оказывается между Землей и Солнцем. Но Луна - темный, непрозрачный твердый шар. Оказавшись между Землей и Солнцем, она, словно громадная заслонка, закрывает собой Солнце. В это время та сторона Луны, которая обращена к Земле, оказывается темной, неосвещенной. Следовательно, солнечное затмение может произойти только во время новолуния. В полнолуние Луна проходит от Земли в стороне, противоположной Солнцу, и может попасть в тень, отбрасываемую земным шаром. Тогда мы будем наблюдать лунное затмение.

Среднее расстояние от Земли до Солнца составляет 149,5 млн. км,а среднее расстояние от Земли до Луны - 384 тыс. км.

Чем ближе предмет, тем большим он нам кажется. Луна по сравнению с Солнцем ближе к нам почти: в 400 раз, и в то же время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Луны и Солнца почти одинаковы. Луна, таким образом, может закрыть от нас Солнце.

Однако расстояния Солнца и Луны от Земли не остаются постоянными, а слегка изменяются. Происходит это потому, что путь Земли вокруг Солнца и путь Луны вокруг Земли - не окружности, а эллипсы. С изменением расстояний между этими телами изменяются и их видимые размеры.

Если в момент солнечного затмения Луна находится в наименьшем удалении от Земли, то лунный диск будет несколько больше солнечного. Луна целиком закроет собой Солнце, и затмение будет полным. Если же во время затмения Луна находится в наибольшем удалении от Земли, то она будет иметь несколько меньшие видимые размеры и закрыть Солнце целиком не сможет. Останется незакрытым светлый ободок Солнца, который во время затмения будет виден как яркое тоненькое кольцо вокруг черного диска Луны. Такое затмение называют кольцеобразным.

Казалось бы, солнечные затмения должны случаться ежемесячно, каждое новолуние. Однако этого не происходит. Если бы Земля и Луна двигались видной плоскости, то в каждое новолуние Луна действительно оказывалась бы точно на прямой линии, соединяющей Землю и Солнце, и происходило бы затмение. На самом деле Земля движется вокруг Солнца в одной плоскости, а Луна вокруг Земли - в другой. Эти плоскости не совпадают. Поэтому часто во время новолуний Луна приходит либо выше Солнца, либо ниже.

Видимый путь Луны на небе не совпадает с тем путем, по которому движется Солнце. Эти пути пересекаются в двух противоположных точках, которые называются узлами лунной о р б и т ы. Вблизи этих точек пути Солнца и Луны близко подходят друг к другу. И только в том случае, когда новолуние происходит вблизи узла, оно сопровождается затмением.

Затмение будет полным или кольцеобразным, если в новолуние Солнце и Луна будут находиться почти в узле. Если же Солнце в момент новолуния окажется па некотором расстоянии от узла, то центры лунного н солнечного дисков не совпадут и Луна закроет Солнце лишь частично. Такое затмение называется частным.

Луна перемещается среди звезд с запада на восток. Поэтому закрытие Солнца Луной начинается с его западного, т. е. правого, края. Степень закрытия называется у астрономов фазой затмения.

Вокруг пятна лунной тени располагается область полутени, здесь затмение бывает частным. Поперечник области полутени составляет около 6-7 тыс. км. Для наблюдателя, который будет находиться вблизи края этой области, лишь незначительная доля солнечного диска покроется Луной. Такое затмение может вообще пройти незамеченным.

Можно ли точно предсказать наступление затмения? Ученые еще в древности установили, что через 6585 дней и 8 часов, что составляет 18 лет 11 дней 8 часов, затмения повторяются. Происходит это потому, что именно через такой промежуток времени расположение в пространстве Луны, Земли и Солнца повторяется. Этот промежуток был назван саросом, что значит повторение.

В течение одного сароса в среднем бывает 43 солнечных затмения, из них 15 частных, 15 кольцеобразных и 13 полных. Прибавляя к датам затмений, наблюдавшихся в течение одного сароса, 18 лет 11 дней и 8 часов, мы сможем предсказать наступление затмений и в будущем.

В одном и том же месте Земли полное солнечное затмение наблюдается один раз в 250 - 300 лет.

Астрономы вычислили условия видимости солнечных затмений на много лет вперед.

ЛУННЫЕ ЗАТМЕНИЯ

К числу «необыкновенных» небесных явлений относятся также лунные затмения. Происходят они так. Полный светлый круг Луны начинает темнеть у своего левого края, на лунном диске появляется круглая бурая тень, она продвигается все дальше и дальше и примерно через час покрывает всю Луну. Луна меркнет и становится красно-бурого цвета.

Диаметр Земли больше диаметра Луны почти в 4 раза, а тень от Земли даже на расстоянии Луны от Земли более чем в 2 1/2 раза превосходит размеры Луны. Поэтому Луна может целиком погрузиться в земную тень. Полное лунное затмение гораздо продолжительнее солнечного: оно может длиться 1 час 40 минут.

По той же причине, по которой солнечные затмения бывают не каждое новолуние, лунные затмения происходят не каждое полнолуние. Наибольшее число лунных затмений в году - 3, но бывают годы совсем без затмений; таким был, например, 1951 год.

Лунные затмения повторяются через тот же промежуток времени, что и солнечные. В течение этого промежутка, в 18 лет 11 дней 8 часов (сарос), бывает 28 лунных затмений, из них 15 частных и 13 полных. Как видите, число лунных затмений в саросе значительно меньше солнечных, и все же лунные затмения можно наблюдать чаще солнечных. Это объясняется тем, что Луна, погружаясь в тень Земли, перестает быть видимой на всей не освещенной Солнцем половине Земли. Значит, каждое лунное затмение видно на значительно большей территории, чем любое солнечное.

Затмившаяся Луна не исчезает совершенно, как Солнце во время солнечного затмения, а бывает слабо видимой. Происходит это потому, что часть солнечных лучей приходит сквозь земную атмосферу, преломляется в ней, входит внутрь земной тени и попадает на Луну. Так как красные лучи спектра менее всего рассеиваются и ослабляются в атмосфере. Луна во время затмения приобретает медно-красный или бурый оттенок.

ЗАКЛЮЧЕНИЕ

Трудно представить себе, что солнечные затмения происходят так часто: ведь каждому из нас наблюдать затмения приходится чрезвычайно редко. Объясняется это тем, что во время солнечного затмения тень от Луны падает не на всю Землю. Упавшая тень имеет форму почти круглого пятна, поперечник которого может достигать самое большее 270 км. Это пятно покроет лишь ничтожно малую долю земной поверхности. В данный момент только на этой части Земли и будет видно полное солнечное затмение.

Луна движется по своей орбите со скоростью около 1 км/сек, т. е. быстрее ружейной пули. Следовательно, ее тень с большой скоростью движется по земной поверхности и не может надолго закрыть какое-то одно место на земном шаре. Поэтому полное солнечное затмение никогда не может продолжаться более 8 минут.

Таким образом, лунная тень, двигаясь по Земле, описывает узкую, но длинную полосу, па которой последовательно наблюдается полное солнечное затмение. Протяженность полосы полного солнечного затмения достигает нескольких тысяч километров. И все же площадь, покрываемая тенью, оказывается незначительной по сравнению со всей поверхностью Земли. Кроме того, в полосе полного затмения часто оказываются океаны, пустыни и малонаселенные районы Земли.

Последовательность затмений повторяется почти точно в прежнем порядке через промежуток времени, который называется саросом (сарос – египетское слово, означающее «повторение»). Сарос, известный ещё в древности, составляет 18 лет и 11,3 суток. Действительно, затмения будут повторяться в прежнем порядке (после какого-либо начального затмения) спустя столько времени, сколько необходимо, чтобы та же фаза Луны случилась на том же расстоянии Луны от узла её орбиты, как и при начальном затмении.

В течение каждого сароса происходит 70 затмений, из них 41 солнечное и 29 лунных. Таким образом, солнечные затмения происходят чаще лунных, но в данной точке на поверхности Земли чаще можно наблюдать лунные затмения, так как они видны на целом полушарии Земли, тогда как солнечные затмения видны лишь в сравнительно узкой полосе. Особенно редко удаётся видеть полные солнечные затмения, хотя в течение каждого сароса их бывает около 10.

№8 Земля, как шар, эллипсоид вращения, 3-хосный эллипсоид, геоид.

Предположения о шарообразности земли появились в VI веке до нашей эры, а с IV века до нашей эры были высказаны некоторые из известных нам доказательств, что Земля имеет форму шара (Пифагор, Эратосфен). Античными учеными доказательства шарообразности Земли основывались на следующих явлениях:
- кругообразный вид горизонта на открытых пространствах, равнинах, морях и т.д.;
- круговая тень Земли на поверхности Луны при лунных затмениях;
- изменение высоты звезд при перемещении с севера (N) на юг (S) и обратно, обусловленное выпуклостью полуденной линии и др. В сочинении «О небе» Аристотель (384 – 322 г.г. до н.э.) указывал, что Земля не только шарообразна по форме, но и имеет конечные размеры; Архимед (287 – 212 г.г. до н.э.) доказывал, что поверхность воды в спокойном состоянии является шаровой поверхностью. Ими же введено понятие о сфероиде Земли, как геометрической фигуре, близкой по форме к шару.
Современная теория изучения фигуры Земли берет начало от Ньютона (1643 – 1727 г.г.), открывшего закон всемирного тяготения и применившего его для изучения фигуры Земли.
К концу 80-х годов XVII века были известны законы движения планет вокруг Солнца, весьма точные размеры земного шара, определенные Пикаром из градусных измерений (1670 г.), факт убывания ускорения силы тяжести на поверхности Земли от севера (N) к югу (S), законы механики Галилея и исследования Гюйгенса о движении тел по криволинейной траектории. Обобщение указанных явлений и фактов привели ученых к обоснованному взгляду о сфероидичности Земли, т.е. деформации ее в направлении полюсов (сплюсности).
Знаменитое сочинение Ньютона – «Математические начала натуральной философии» (1867 г.) излагает новое учение о фигуре Земли. Ньютон пришел к выводу о том, что фигура Земли должна быть по форме в виде эллипсоида вращения с небольшим полярным сжатием (этот факт обосновывался им уменьшением длины секундного маятника с уменьшением широты и уменьшением силы тяжести от полюса к экватору из-за того, что «Земля на экваторе немного выше»).
Исходя из гипотезы, что Земля состоит из однородной массы плотности, Ньютон теоретически определил полярное сжатие Земли (α) в первом приближении равном, примерно, 1: 230. На самом деле Земля неоднородна: кора имеет плотность 2,6 г/см3, тогда как средняя плотность Земли составляет 5,52 г/см3. Неравномерное распределение масс Земли продуцирует обширные пологие выпуклости и вогнутости, которые сочетаясь образуют возвышенности, углубления, впадины и другие формы. Заметим, что отдельные возвышения над Землей достигают высот более 8000 метров над поверхностью океана. Известно, что поверхность Мирового океана (МО) занимает 71 %, суша – 29 %; средняя глубина МО (Мирового океана) 3800м, а средняя высота суши – 875 м. Общая площадь земной поверхности равна 510 х 106 км2. Из приведенных данных следует, большая часть Земли покрыта водой, что дает основание принять ее за уровенную поверхность (УП)и, в конечном итоге, за общую фигуру Земли. Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней (по отвесной линии).
Сложную фигуру Земли, ограниченную уровенной поверхностью, являющуюся началом отчета высот, принято называть геоидом. Иначе, поверхность геоида, как эквипотенциальная поверхность, фиксируется поверхностью океанов и морей, находящихся в спокойном состоянии. Под материками поверхность геоида определяется как поверхность, перпендикулярная силовым линиям (рис. 3-1).
P.S. Название фигуры Земли – геоид – предложено немецким ученым –физиком И.Б. Листигом (1808 – 1882 г.г.). При картографировании земной поверхности, на основании многолетних исследований ученых, сложную фигуру геоида без ущерба для точности, заменяют математически более простой – эллипсоидом вращения . Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.
Эллипсоид вращения близко подходит к телу геоида (уклонение не превышает 150 метров в некоторых местах). Размеры земного эллипсоида определялись многими учеными мира.
Фундаментальные исследования фигуры Земли, выполненные русскими учеными Ф.Н. Красовским и А.А. Изотовым, позволили развить идею о трехосном земном эллипсоиде с учетом крупных волн геоида, в результате были получены его основные параметры.
В последние годы (конец XX и начало XXI в.в.) параметры фигуры Земли и внешнего гравитационного потенциала определены с использованием космических объектов и применением астрономо–геодезических и гравиметрических методов исследований так надежно, что теперь речь идет об оценке их измерений во времени.
Трехосный земной эллипсоид, характеризующий фигуру Земли, подразделяют на общеземной эллипсоид (планетарный), подходящий для решения глобальных задач картографии и геодезии и референц – эллипсоид, который используют в отдельных регионах, странах мира и их частях. Эллипсо́ид враще́ния (сферо́ид) - это поверхность вращения в трёхмерном пространстве, образованная при вращении эллипса вокруг одной из его главных осей. Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.

Геоид - фигура Земли, ограниченная уровенной поверхностью потенциала силы тяжести, совпадающей в океанах со средним уровнем океана и продолженной под континенты (материки и острова) так, что эта поверхность всюду перпендикулярна направлению силы тяжести. Поверхность геоида более сглажена, чем физическая поверхность Земли.

Форма геоида не имеет точного математического выражения, и для построения картографических проекций подбирается правильная геометрическая фигура, которая мало отличается от геоида. Лучшим приближением геоида служит фигура, получающаяся в результате вращения эллипса вокруг короткой оси (эллипсоид)

Термин «геоид» был предложен в 1873 году немецким математиком Иоганном Бенедиктом Листингом для обозначения геометрической фигуры, более точно, чем эллипсоид вращения, отражающей уникальную форму планеты Земля.

Крайне сложная фигура - геоид. Она существует лишь теоретически, однако на практике ее нельзя ни пощупать, ни увидеть. Можно представить себе геоид в виде поверхности, сила земного притяжения в каждой точке которой направлена строго вертикально. Если бы наша планета была правильным шаром, заполненным равномерно каким-либо веществом, то отвес в любой ее точке смотрел бы в центр шара. Но ситуация осложняется тем, что неоднородной является плотность нашей планеты. В одних местах имеются тяжелые горные породы, в других пустоты, горы и впадины разбросаны по всей поверхности, так же неравномерно распределены равнины и моря. Все это меняет в каждой конкретной точке гравитационный потенциал. В том, что форма земного шара - геоид, виноват также эфирный ветер, который обдувает нашу планету с севера.