Генетика сообщение по обществознанию. История генетики

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы - линии, а затем породы и сорта с характерными для них наследственными свойствами.

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности, Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей - цитологов (Чистяковым в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название "хромосомы". В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н. Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый - для голосеменных, второй - для покрытосеменных.

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпевают редукцию числа хромосом ровно вдвое, а при оплодотворении - слиянии женского и мужского ядра - восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины - дисциплины с собственными предметом и методами исследования.

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил "о законе расщепления гибридов; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью "ЗаконГрегора Менделя о поведении потомства у расовых гибридов"; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).

Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего "переоткрыли" закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье "Опыты над растительными гибридами", опубликованной в "трудах" Общества естествоиспытателей в Брюнне (Чехословакия).

Г. Мендель (1822-1884) на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

1. признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

2. отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. Гуго де Фриз (1848-1935) формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно - мутационно.

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу "О наследовании в популяциях и чистых линиях", в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп - линий. В этом же исследовании наиболее четко устанавливается, существование двух типов изменчивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

С 1911 г. Т. Морган (1866-1945) с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н. И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г. А. Надсон и Г. С. Филиппов на грибах, а в 1927 г. Г. Меллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики - радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием, было, положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США), опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

Предложенная ими модель ДНК хорошо согласуется с биологической функцией этого соединения: способностью к самоудвоению генетического материала и устойчивому сохранению его в поколениях - от клетки к клетке. Эти свойства молекул ДНК объяснили и молекулярный механизм изменчивости: любые отклонения от исходной структуры гена, ошибки самоудвоения генетического материала ДНК, однажды возникнув, в дальнейшем точно и устойчиво воспроизводятся в дочерних нитях ДНК. В последующее десятилетие эти положения были экспериментально подтверждены: уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке.

Кроме того, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов - продуцентов антибиотиков, аминокислот. В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке.

Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

В последнее десятилетие возникло новое направление в молекулярной генетике - генная инженерия - система приемов, позволяющих биологу конструировать искусственные генетические системы. Генная инженерия основывается на универсальности генетического кода: триплеты нуклеотидов ДНК программируют включение аминокислот в белковые молекулы всех организмов - человека животных, растений, бактерий, вирусов. Благодаря этому можно синтезировать новый ген или выделить его из одной бактерии и ввести его в генетический аппарат другой бактерии, лишенной такого гена.

Развитие генетики до наших дней - это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже очень много, и с каждым днем передний край науки приближается к цели - разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена:

Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции);

Во-вторых, он способен мутационно изменяться;

В-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты - ДНК;

В-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекуле.

В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов - генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

Лысенко Анна

В реферате по биологии дано определение генетики, этапы развития этой науки, значение для жизни человека.

Скачать:

Предварительный просмотр:

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусо-генетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека.

Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Но рассмотрим отдельно историю развития генетики.

Основные этапы развития генетики.

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы – линии, а затем породы и сорта с характерными для них наследственными свойствами.

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности. Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов (Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название «хромосомы». В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый – для голосеменных, второй – для покрытосеменных.

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпивают редукцию числа хромосом ровно вдвое, а при оплодотворении – слиянии женского и мужского ядра – восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины – дисциплины с собственными предметом и методами исследования.

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил «о законе расщепления гибридов»; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью «Закон Грегора Менделя о поведении потомства у расовых гибридов»; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).

Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего «переоткрыли» закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье «Опыты над растительными гибридами», опубликованной в «трудах» Общества естествоиспытателей в Брюнне (Чехословакия).

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно – мутационно.

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу «О наследовании в популяциях и чистых линиях», в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп – линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики – радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней – это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели – разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты – ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов – генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

Биология - очень объемная наука, которая охватывает все стороны жизни каждого живого существа, начиная от строения его микроструктур внутри тела и заканчивая связью с внешней средой и космосом. Именно поэтому разделов у этой дисциплины очень много. Однако одним из самых молодых, но перспективных и имеющих сегодня особенно важное значение является генетика. Она зародилась позже остальных, но сумела стать самой актуальной, важной и объемной наукой, имеющей собственные цели, задачи и объект изучения. Рассмотрим, какова история развития генетики и что представляет собой эта ветвь биологии.

Генетика: предмет и объект изучения

Свое название наука получила только в 1906 году по предложению англичанина Бэтсона. Определение ей можно дать следующее: это дисциплина, изучающая механизмы наследственности, ее изменчивости у разных видов живых существ. Следовательно, основной целью генетики является выяснение строения структур, ответственных за передачу наследственных признаков, и исследование самой сути этого процесса.

Объектами изучения являются:

  • растения;
  • животные;
  • бактерии;
  • грибы;
  • человек.

Таким образом, она охватывает вниманием все царства живой природы, не забыв ни одного из представителей. Однако на сегодняшний день максимально поставлены на поток исследования именно одноклеточных простейших существ, все эксперименты по генетике проводятся на них, а также на бактериях.

Чтобы прийти к имеющимся теперь результатам, история развития генетики прошла длинный и тернистый путь. В разные периоды времени она подвергалась то интенсивному развитию, то полному забвению. Однако в итоге все же получила достойное место среди всей семьи биологических дисциплин.

История развития генетики кратко

Чтобы охарактеризовать основные вехи становления рассматриваемой ветви биологии, следует обратиться в не столь далекое прошлое. Ведь свое начало генетика берет из XIX века. А официальной датой ее зарождения как полностью обособленной дисциплины считается 1900 год.

Кстати, если говорить совсем уже об истоках, то следует заметить попытки селекции растений, скрещивания животных еще очень давно. Ведь этим занимались земледельцы и скотоводы еще в XV веке. Просто происходило это не с научной точки зрения.

Таблица "История развития генетики" поможет освоить ее главные исторические моменты становления.

Период развития Основные открытия Ученые
Начальный (вторая половина XIX века)

Гибридологические исследования в области растений (исследование поколений на примере вида гороха)

Грегори Мендель (1866 год)

Открытие процесса изучение полового размножения и его значения для закрепления и передачи признаков от родителей к потомству Страсбургер, Горожанкин, Гертвиг, Ван-Беневин, Флемминг, Чистяков, Вальдейр и другие (1878-1883 гг.)
Средний (начало-середина XX века) Это период максимально интенсивного роста развития генетических исследований, если рассматривать историческую эпоху в целом. Ряд открытий в области клетки, его значения и механизмов работы, расшифровка строения ДНК, разработка и скрещивания, закладывание всех теоретических основ генетики приходится именно на этот период времени Множество отечественных ученых и генетиков со всего мира: Томас Морган, Навашин, Серебряков, Вавилов, де Фриз, Корренс, Уотсон и Крик, Шлейден, Шванн и многие другие
Современный период (вторая половина XX века и до сегодняшнего дня) Этот период характеризуется рядом открытий в области микроструктур живых существ: детальное изучение строения молекул ДНК, РНК, белка, ферментов, гормонов и прочее. Выяснение глубинных механизмов кодирования признаков и передача их по наследству, генетический код и его расшифровка, механизмы трансляции, транскрипции, репликации и так далее. Огромное значение имеют дочерние генетические науки, которых именно в этот период сформировалось немало В. Эльвинг, Ноден и другие

В приведенной выше таблице история развития генетики кратко отображена. Далее рассмотрим более подробно главные открытия разных периодов.

Основные открытия XIX века

Главными трудами этого периода стали работы трех ученых из разных стран:

  • в Голландии Г. де Фриз - изучение особенностей наследования признаков у гибридов разных поколений;
  • в Германии К. Корренс - сделал то же самое на примере кукурузы;
  • в Австрии К. Чермак - повторил опыты Менделя на посевном горохе.

Все эти открытия базировались на написанных 35 годами ранее работах Грегори Менделя, который проводил многолетние исследования и все результаты фиксировал в научных трудах. Однако эти данные не вызвали интереса у его современников.

В этот же период история развития генетики включает в себя ряд открытий по изучению половых клеток человека и животных. Доказано, что некоторые признаки, которые передаются по наследству, закрепляются без изменений. Другие же являются индивидуальными для каждого организма и выступают результатом приспособления к условиям окружающей среды. Работы проводились Страсбургером, Чистяковым, Флеммингом и многими другими.

Развитие науки в XX веке

Так как официальной датой рождения считается то неудивительно, что именно в XX веке вершилась история развития генетики. исследования, созданный к этому времени, позволяет медленно, но верно получать потрясающие результаты.

Создание новейших достижений техники дает возможность заглянуть в микроструктуры - это еще более продвигает генетику вперед в развитии. Так, были установлены:

  • структуры ДНК и РНК;
  • механизмы их синтеза и репликации;
  • молекула белка;
  • особенности наследования и закрепления;
  • локализация отдельных признаков в хромосомах;
  • мутации и их проявления;
  • появился доступ к управлению генетическим аппаратом клетки.

Наверное, одним из самых важных в этот период открытий стала расшифровка ДНК. Это было сделано Уотсоном и Криком в 1953 году. В 1941-м было доказано, что признаки кодируются в белковых молекулах. С 1944 по 1970 г. сделаны максимальные открытия в области строения, репликации и значения ДНК и РНК.

Современная генетика

История развития генетики как науки на современном этапе проявляется в интенсификации разных ее направлений. Ведь сегодня существуют:

  • молекулярная генетика;
  • медицинская;
  • популяционная;
  • радиационная и прочие.

Вторую половину XX и начало XXI века для рассматриваемой дисциплины принято считать геномной эрой. Ведь современные ученые вмешиваются уже непосредственно в весь генетический аппарат организма, учатся изменять его в нужную сторону, управлять происходящими там процессами, снижать патологические проявления, купировать их в корне.

История развития генетики в России

В нашей стране рассматриваемая наука начала свое интенсивное становление лишь во второй половине XX века. Все дело в том, что долгое время наблюдался период застоя. Это времена правления Сталина и Хрущева. Именно в эту историческую эпоху случился раскол в ученых кругах. Т. Д. Лысенко, имевший власть, заявил о том, что все исследования в области генетики недействительны. А сама она не является наукой вообще. Заручившись поддержкой Сталина, он всех известных генетиков того времени отправил на смерть. Среди них:

  • Вавилов;
  • Серебровский;
  • Кольцов;
  • Четвериков и другие.

Многие вынуждены были подстраиваться под требования Лысенко, чтобы избежать смерти и продолжать исследования. Некоторые эмигрировали в США и другие страны.

Только после ухода с поста Хрущева генетика в России получила свободу в развитии и интенсивный рост.

Отечественные ученые-генетики

Самыми значительными открытиями, которыми может гордиться рассматриваемая наука, стали и те, что осуществились нашими соотечественниками. История развития генетики именно в России связана с такими именами, как:

  • Николай Иванович Вавилов (учение об иммунитете растений, и прочее);
  • Николай Константинович Кольцов (химический мутагенез);
  • Н. В. Тимофеев-Ресовский (основоположник радиационной генетики);
  • В. В. Сахаров (природа мутаций);
  • М. Е. Лобашев (автор методических пособий по генетике);
  • А. С. Серебровский;
  • К. А. Тимирязев;
  • Н. П. Дубинин и многие другие.

Этот список можно продолжать еще долго, ведь во все времена русские умы были великими во всех отраслях и научных областях знаний.

Направления в науке: медицинская генетика

История развития медицинской генетики берет свое начало гораздо раньше, чем общая наука. Ведь еще в XV-XVIII веках были доказаны явления передачи по наследству таких заболеваний, как:

  • полидактилия;
  • гемофилия;
  • прогрессирующая хорея;
  • эпилепсия и прочие.

Была установлена отрицательная роль инцеста в сохранении здоровья и нормального развития потомства. Сегодня этот раздел генетики является очень важной областью медицины. Ведь именно он позволяет контролировать проявления и купировать многие генетические мутации еще на стадии эмбрионального развития плода.

Генетика человека

История развития берет свое начало намного позже общей генетики. Ведь заглянуть внутрь хромосомного аппарата людей стало возможным лишь при использовании самых современных технических устройств и методов исследования.

Человек стал объектом генетики в первую очередь с точки зрения медицины. Однако основные механизмы наследования и передачи признаков, закрепления и проявления их у потомства для людей ничем не отличаются от таковых у животных. Поэтому не обязательно объектом исследования использовать именно человека.

>Рефераты по биологии

Генетика

Генетика – одна из самых важных областей биологии. Это наука о закономерностях наследственности и изменчивости. Слово «генетика» имеет греческое происхождение и в переводе обозначает «происходящий от кого-то». Объектами исследования могут выступать растения, животные, люди, микроорганизмы. Генетика тесно связана с такими науками, как генная инженерия, медицина, микробиология и другими.

Изначально генетика рассматривалась как закономерность наследственности и изменчивости на основе внешних и внутренних признаков организма. На сегодняшний день известно, что гены существуют и представляют собой специально отмеченные участки ДНК или РНК, то есть молекулы, в которых запрограммирована вся генетическая информация.

Судя по археологическим доказательствам людям уже более 6000 лет известно, что некоторые физические признаки могут передаваться из поколения в поколение. Человек даже научился создавать улучшенные сорта растений и породы животных путем отбора определенных популяций и скрещивания их между собой. Однако важность генетики в полной мере стала известна лишь в XIX-XX веках с появлением современных микроскопов. Большой вклад в развитие генетики внес австрийский монах Грегор Мендель. В 1866 году он представил свою работу об основах современной генетики. Он доказал, что наследственные задатки не смешиваются, а передаются от поколения к поколению в виде обособленных единиц. В 1912 году американский генетик Томас Морган, доказал, что эти единицы находятся в хромосомах. С тех пор классическая генетика сделала научный шаг вперед и достигла больших успехов в объяснении наследственности не только на уровне организма, но и на уровне гена.

В 1940-1950-х годах началась эпоха молекулярной генетики. Появились доказательства ведущей роли ДНК в передаче наследственной информации. Открытием стала расшифровка структуры ДНК, триплетного кода и описание механизмов биосинтеза белка. Также, были обнаружены аминокислотная или нуклеотидная последовательность ДНК и РНК.

Первые опыты в России появились в XVIII веке и были связаны с гибридизацией растений. В XX веке появились важные работы в среде экспериментальной ботаники и зоологии, а также на опытных сельскохозяйственных станциях. К концу 1930-х годов в стране появилась сеть организованных научно-исследовательских институтов, опытных станций и вузовских кафедр генетики. В 1948 году генетика была объявлена лженаукой. Восстановление науки произошло после открытия и расшифровки структуры ДНК, примерно в 1960-е годы.­

История развития генетики началась с теории эволюции, которую опубликовал в 1859 английский натуралист и путешественник Чарльз Дарвин в книге “Происхождение видов”.

В 1831 году Дарвин присоединился к пятилетней научной экспедиции изучавшей окаменелости, найденные в породах свидетельствующих о животных, которые жили миллионы лет назад. Также Дарвин отметил, что на Галапагосских островах поддерживается своя собственная разновидность зябликов, которые тесно связаны между собой, но имели незначительные различия, которые, казалось были адаптированы в соответствии с их индивидуальной средой.

По возвращении в Англию, Дарвин на протяжении следующих 20 лет предложил теорию эволюции происходящую в процессе естественного отбора. Книга “Происхождение видов” была кульминацией этих усилий, где он утверждал, что живые существа лучше всего подходит для их среды обитания, у них больше шансов выжить, размножаться и передавать свои характеристики потомкам. Это привело к теории о постепенном изменении видов с течением времени. Его исследования содержат некоторые истины, такие как связь между животной и человеческой эволюцией.

Книга, положившая начало истории развития генетики была крайне противоречивой на то время, так как он бросил вызов доминирующим взглядом в период, когда многие люди буквально думали, что Бог создал мир за семь дней. Он также предположил, что люди были животные и, возможно, произошли от обезьяны. Он отметил, что через тысячи лет эволюции животные имеют свои тела приспособившись к жизни. Если люди произошли от животных на протяжении миллионов лет, определенные врожденные качества остались и сегодня.

1859 – Чарльз Дарвин публикует “Происхождение видов”

Наука узучающая наследственную изменчивость привела к развитию молекулярной биологии для более глубокого понимания механизмов наследственной изменчивости и науке генетика.

Начальный этап развития молекулярной биологии

Начальный этап развития молекулярной биологии принадлежит швейцарскому физиологическому химику Фридриху Мишеру который в 1869 году впервые выявил, как он назвал “нуклеиновые” ядра человеческих белых кровяных клеток, которые мы знаем сегодня, как дезоксирибонуклеиновая кислота (ДНК).

Первоначально Фридрих Мишер изолировал и охарактеризовал компоненты белка, белые кровяные клетки. Для этого он взял из местной хирургической клиники гной-насыщенные бинты, которые он планировал промыть перед фильтрацией белых клеток крови и выделения их различных белков.

Однако, в процессе работы наткнулся на вещество, обладающее необычными химическими свойствами в отличие от белков, с очень высоким содержанием фосфора и устойчивостью к перевариванию белка. Мишер быстро понял, что он открыл новое вещество и почувствовал важность своего открытия. Несмотря на это, потребовалось более 50 лет широкой научной общественности, чтобы оценить его работу.

1869 Фридрих Мишер выделяет “нуклеиновые” кислоты или ДНК

Макромолекула ДНК обеспечивает хранение, передачу из поколения в поколение и реализацию генетической информации

Основные начальные этапы развития генетики

Основные этапы развития генетики начались с учения синтеза дарвинизма и механизмов эволюции живого.

В 1866 году, неизвестный монах Австрийский биолог и ботаник Грегор Мендель был первым человеком, чтобы пролить свет на пути, в котором признаки передаются из поколения в поколение.

Грегор Мендель сегодня считается отцом генетики

Он пользовался не такой известностью в течение своей жизни, и его открытия во многом не принимались в научном сообществе. На самом деле, он был настолько впереди, что потребовалось три десятилетия чтобы его открытия были приняты всерьез.

Между 1856 и 1863 г. Мендель проводил опыты на растениях гороха, пытаясь скрестить и определить “истинную” линию в определенной комбинации. Он выделил семь признаков: высота растения, форма и цвет стручка, форма семян, цвет и положение цветов и окраска.

Он обнаружил, что, когда желтый горох и зеленый горошек растение было выращено вместе, их отпрыски всегда были желтыми. Однако, в следующем поколении растений, зеленый горошек вернулся в соотношении 3:1.

Мендель ввел термины рецессивный и доминантный по отношению к чертам характера, для того, чтобы объяснить этот феномен. Так, в примере, зеленый признак был рецессивным, а желтый признак был доминирующим.

1866 – Грегор Мендель открывает базовые принципы генетики

В 1900 году, через 16 лет после его смерти исследования наследственных признаков гороха Грегора Менделя наконец восприняла широкая научная общественность.

Голландский ботаник и генетик Гуго де Фриз, немецкий ботаник и генетик Карл Эрих Корренс и австриец Эрих Чермак-Зейзенегг все самостоятельно переоткрыли работы Менделя и представили результаты экспериментов по гибридизации с похожими выводами.

В Великобритании, биолог Уильям Бейтсон стал ведущим теоретиком учения Менделя и вокруг него собралась восторженная группа последователей. История развития генетики потребовала три десятилетия чтобы в достаточной степени понять теорию Менделя и найти свое место в эволюционной теории и ввести термин: генетика как наука изучающая наследственную изменчивость .

Этические проблемы развития медицинской генетики

Этические проблемы развития медицинской генетики появились с начала 1900-х годов, когда зародилась наука евгеника (от греч. –«хороший род»). Смысл науки евгеники во влиянии на репродуктивные качества для определенных господствующих рас людей. Наука евгеника – особенно темная глава, которая свидетельствует об отсутствии понимания относительно нового открытие в то время. Термин “евгеника” был впервые использован около 1883 ссылаться на “науку” наследственность и воспитанность.

В 1900 году были переоткрыты теории Менделя, которые нашли регулярной статистической шаблон для характеристики человека как рост и цвет. В угаре исследования, которые последовали, одна мысль ответвляется в социальную теорию науки евгеники. Это было огромное народное движение в первой четверти 20-го века и была представлена как математическая наука, которая может предсказать черты характера и особенности человеческого существа.

Этические проблемы развития медицинской генетики возникли, когда исследователи заинтересовались контролем размножения человеческих существ, так что только люди с лучшими генами могли воспроизвести и улучшить вид. Сейчас это используется в качестве своего рода “научного” расизма, чтобы убедить людей, что некоторые расовые виды были выше других в плане чистоты, интеллекта и т. д. Это свидетельствует об опасностях, которые приходят с практикующей наукой евгеникой без истинного уважения к человечеству в целом.

Многие люди могли видеть, что дисциплина была пронизана неточностями, допущениями и противоречиями, а также поощрение дискриминации и расовой ненависти. Однако, в 1924 году движение получило политическую поддержку, когда Закон об иммиграции был принят большинством в Палате представителей и Сенате США. Закон ввел жесткие квоты на иммиграцию из стран для “низших” рас, таких как Южная Европа и Азия. Когда политический выигрыш и удобная наука евгеника объединили усилия появились этические проблемы развития медицинской генетики.

При продолжении научных исследований и внедрение бихевиоризма (наука о поведении) в 1913 году, популярность евгеники, наконец, начала падать. Ужасы институциональной евгеники в нацистской Германии, которые появились на свет во время 2-й мировой войны полностью уничтожили то, что осталось от движения.

Так, с конца 19 начала 20 века история развития генетики получила основные закономерности передачи наследственных признаков на растительных и животных организмах которые приложили в дальнейшем и к человеку.

Сейчас возникла наука , изучающая процесс старения организма.