Импульсный блок питания своими руками 14в 10а. Как работает простой и мощный импульсный блок питания

Устройства, в которых используются импульсные понижающие блоки питания (другое название - инверторы) - это и блоки питания различной радиотехники, усилителей мощности, зарядных устройств, и так далее. Слишком простые схемы могут работать нестабильно - не держать большой ток, менять выходное напряжение в зависимости от нагрузки. Предлагаемая ниже схема импульсного блока питания не слишком сложная, содержит стандартные комплектующие, поэтому рекомендуется для повторения.

В основе этого самодельного импульсного блока питания применён трансформатор от питания.


В качестве блока управления полевых транзисторов, используется самотактируемый полумостовой драйвер IR2151 . Драйвер открывает затворы транзисторов в зависимости от частоты задающего генератора выполненного на резисторе 10 kOm и конденсаторе 1000 pF. Если применяется IR2153D, то диод FR107 не используется.


Полевые транзисторы применяются с напряжением сток-исток не менее 400 вольт и наименьшим сопротивлением в открытом состоянии, что уменьшает их тепловыделение и увеличивает стабильность работы.

В данном варианте были применены транзисторы IRFBC40 с максимальным напряжением исток-сток 600В и током 6А. Для защиты транзисторов в момент включения на входе применяется РТС термистор. На входе установлен диодный мост, рассчитанный на ток до 10А.


Диоды на выходе применяются со временем восстановления максимум 100 нс. Мною же были применены диоды Шоттки SBL2040CT напряжением на 40В и током 20А из компьютерного блока питания. Выходная ёмкость 1000uF 50В.

Тип блока питания, как уже заметили — импульсный. Такое решение резким образом уменьшает вес и размеры конструкции, но работает не хуже обыкновенного сетевого трансформатора, к которому мы привыкли. Схема собрана на мощном драйвере IR2153. Если микросхема в DIP корпусе, то диод нужно ставить обязательно. На счет диода — обратите внимание, он не обычный, а ультрабыстрый, поскольку рабочая частота генератора составляет десятки килогерц и обычные выпрямительные диоды тут не подойдут.


В моем случае вся схема была собрана на «рассыпухе», поскольку собирал только для проверки работоспособности. Мной схема практически не настраивалась и сразу заработала как швейцарские часы.

Трансформатор — желательно взять готовый, от компьютерного блока питания (подойдет буквально любой, я взял трансформатор с косичкой от блока питания АТХ 350 ватт). На выходе трансформатора можно использовать выпрямитель из диодов ШОТТКИ (тоже можно найти в компьютерных блоках питания), или любые быстрые и ультрабыстрые диоды с током 10 Ампер и более, также можно ставить наши КД213А.






Схему подключайте в сеть через лампу накаливания 220 Вольт 100 ватт, в моем случае все тесты делал инвертором 12-220 с защитой от КЗ и перегруза и только после точной настройки решился подключить в сеть 220 Вольт.

Как должна работать собранная схема?

  • Ключи холодные, без выходной нагрузки (у меня даже с выходной нагрузкой 50 ватт ключи оставались ледяными) .
  • Микросхема не должна перегреваться в ходе работы.
  • На каждом конденсаторе должно быть напряжение порядка 150 Вольт, хотя номинал этого напряжение может откланяться на 10-15 Вольт.
  • Схема должна работать бесшумно.
  • Резистор питания микросхемы (47к) должен чуть перегреваться во время работы, возможен также ничтожный перегрев резистора снаббера (100 Ом).

Основные проблемы, которые возникают после сборки

Проблема 1. Собрали схему, при подключении контрольная лампочка, которая подключена на выход трансформатора мигает, а сама схема издает непонятные звуки.

Решение. Скорее всего не хватает напряжения для питания микросхемы, попробуйте снизить сопротивление резистора 47к до 45, если не поможет, то до 40 и так (с шагом 2-3кОм) до тех пор, пока схема не заработает нормально.

Проблема 2. Собрали схему, при подаче питания ничего не греется и не взрывается, но напряжение и ток на выходе трансформатора мизерные (почти ровны нулю)

Решение. Замените конденсатор 400Вольт 1мкФ на дроссель 2мГн.

Проблема 3. Один из электролитов сильно греется.

Решение. Скорее всего он нерабочий, замените на новый и заодно проверьте диодный выпрямитель, может именно из-за нерабочего выпрямителя на конденсатор поступает переменка.

Импульсный блок питания на ir2153 можно использовать для питания мощных, высококачественных усилителей, или же использовать в качестве зарядного устройства для мощных свинцовых аккумуляторов, можно и в качестве блока питания — все на ваше усмотрение.

Мощность блока может доходить до 400 ватт , для этого нужно будет использовать трансформатор от АТХ на 450 ватт и заменить электролитические конденсаторы на 470мкФ — и все!

В целом, импульсный блок питания своими руками можно собрать всего за 10-12 $ и то если брать все компоненты из радиомагазина, но у каждого радиолюбителя найдется больше половины радиодеталей, использованных в схеме.

Устанавливаются во многих электроприборах. Основным их элементом принято считать катушку индуктивности. По своим параметрам она может довольно сильно отличаться, и в первую очередь это связано с пороговым напряжением в сети.

Дополнительно следует учитывать мощность самого прибора. Сделать простой блок питания в домашних условиях довольно просто. Однако в данном случае необходимо уметь рассчитывать показатель частотной модуляции. Для этого учитывается вектор прерывания в сети и параметр интеграции.

Как сделать блок для компьютера?

Для того чтобы собирать импульсные блоки питания своими руками для компьютеров, потребуются катушки индуктивности средней мощности. Частотный сдвиг в данном случае будет полностью зависеть от типа используемых конденсаторов. Дополнительно перед началом работы следует рассчитать показатель модуляции. При этом важно учесть пороговое напряжение в системе.

Если параметр модуляции находится в районе 80 %, то конденсаторы можно использовать с емкостью менее 4 пФ. Однако следует позаботиться о наличии мощных транзисторов. Основной проблемой данных блоков принято считать перегрев обмотки катушки. При этом человек может наблюдать небольшую задымленность. Ремонт импульсного блока питания в данном случае следует начинать с отключения в первую очередь всех конденсаторов. После этого контакты необходимо тщательно зачистить. Если в конечном счете проблема будет не устранена, катушку индуктивности придется полностью заменить.

Модель на 3 В

Сделать импульсные блоки питания своими руками на 3 В можно используя обычные катушки индуктивности серии РР202. Показатели проводимости у них находятся на среднем уровне. В данной ситуации параметр модуляции в системе не должен превышать 70 %. В противном случае пользователь может столкнуть с частотным сдвигом, который будет происходить в блоке.

Дополнительно важно подбирать конденсаторы с емкостью не менее 5 пФ. Принцип работы импульсного блока питания данного типа основывается на смене фазы. При этом нередко специалистами дополнительно устанавливаются преобразователи. Все это необходимо для того, чтобы промежуточная частота была как можно меньше. Кулеры на блоки данного типа монтируются крайне редко.

Устройство на 5 В

Чтобы сделать импульсные блоки питания своими руками, необходимо обязательно подобрать выпрямитель, исходя из мощности электроприбора. Конденсаторы в данном случае используются с емкостью до 6 пФ. При этом дополнительно в приборе устанавливаются попарно транзисторы. Это необходимо для того, чтобы показатель модуляции как минимум вывести на уровень 80 %.

Все это позволит повысить также параметр индуктивности. Проблемы данных блоков чаще всего связаны именно с перегревом конденсаторов. При этом на катушку особого напряжения не оказывается. Ремонт импульсного блока питания в данном случае следует начинать стандартно - с зачистки контактов. Только после этого устанавливается более мощный преобразователь.

Что понадобится для блока на 12 В?

Стандартная схема импульсного блока питания данного типа включает в себя катушку индуктивности, конденсаторы, а также выпрямитель вместе с фильтрами. Параметр модуляции в этом случае значительно зависит от показателя предельной частоты. Дополнительно важно учитывать скорость интегрального процессора. Транзисторы для блока данного типа в основном подбираются полевого вида.

Конденсаторы необходимы только с емкостью на уровне 5 пФ. Все это в конечном счете позволит значительно понизить риск термального повышения в системе. Катушки индуктивности устанавливаются, как правило, средней мощности. При этом обмотки для них обязательно должны использоваться медные. Регулируется импульсный блок питания 12В за счет специальных контролеров. Однако многое в данной ситуации зависит от типа электроприбора.

Блоки с фильтрами ММ1

Схема импульсного блока питания с фильтрами данной серии включает в себя, помимо катушки индуктивности, выпрямитель, конденсатор и резистор вместе с преобразователем. Использование фильтров в устройстве позволяет значительно сократить риск термального повышения. При этом чувствительность модели повышается. Коэффициент модуляции в этом случае напрямую зависит от прерывания сигнала.

Для повышения порогового напряжения специалисты резисторы рекомендуют применять только полевого типа. При этом емкость конденсатора минимум должна быть на уровне 4 Ом. Основной проблемой таких устройств принято считать повышение отрицательного сопротивления. В результате все резисторы на плате довольно быстро выгорают. Ремонт блока в такой ситуации необходимо начинать с замены внешней обмотки катушки индуктивности. Дополнительно следует проверить полярность резисторов. В некоторых случаях повышение отрицательного сопротивления в цепи связано с увеличением диапазона частоты. В данном случае целесообразнее поставить более мощный преобразователь.

Как собрать блок с выпрямителем?

Чтобы сделать импульсные блоки питания своими руками с выпрямителем, транзисторы понадобятся закрытого типа. При этом конденсаторов в системе должно быть предусмотрено как минимум четыре единицы. Минимальная их емкость обязана находиться на уровне 5 пФ. Принцип работы импульсного блока питания данного типа основывается на изменении фазы тока. Происходит данный процесс непосредственно за счет преобразователя. Фильтры у таких моделей устанавливаются довольно редко. Связано это в большей степени с тем, что пороговое напряжение вследствие их использования значительно повышается.

Модели со сглаживающими фильтрами

Схема импульсного блока питания 12В со сглаживающими фильтрами конденсаторы предусматривает с емкостью как минимум в 4 пФ. За счет этого показатель модуляции должен находится на уровне 70 %. Для того чтобы стабилизировать процесс преобразования, многие используют резисторы только закрытого типа. Пропускная способность у них довольно малая, однако проблему они решают. Принцип импульсного блока питания основывается на изменении фазы устройства. Фильтры у него чаще всего устанавливаются сразу возле катушки.

Блоки повышенной стабилизации

Сделать блок данного типа можно используя катушку индуктивности только большой мощности. При этом конденсаторов в системе должно быть как минимум пять единиц. Также следует заранее подсчитать количество необходимых резисторов. Если преобразователь используется в блоке низкочастотный, то резисторов необходимо использовать только два. В противном случае они устанавливаются также и на выходе. Фильтры для данных систем применяются самые разнообразные.

В этой ситуации многое зависит от показателя модуляции. Основной проблемой таких систем принято считать перегрев резисторов. Происходит это из-за резкого повышения порогового напряжения. При этом преобразователь также выходит из строя. Ремонт блока в такой ситуации необходимо начинать также с зачистки контактов. Только после этого можно проверить уровень отрицательного сопротивления. Если данный параметр превышает 5 Ом, то необходимо полностью заменить все конденсаторы в устройстве.

Модели с конденсаторами РС

Сделать блоки с конденсаторами данной серии можно довольно просто. Резисторы для них используются только закрытого типа. При этом полевые аналоги значительно снизят параметр модуляции до 50 %. Катушки индуктивности с конденсаторами применяются средней мощности. Прерывание сигнала в данном случае напрямую зависит от скорости возрастания предельного напряжения. Преобразователи в устройствах используются довольно редко. В данном случае интегрирование происходит за счет изменения положения резистора.

Устройства с конденсаторами СХ

Сделать блоки данного типа можно только на резисторах закрытого типа. Катушки индуктивности на них можно устанавливать различной мощности. В данном случае параметр модуляции зависит исключительно от порогового напряжения. Если рассматривать модели для телевизоров, то блок лучше всего делать сразу с системой фильтрации. В данном случае низкочастотные помехи будут отсеиваться сразу на входе. Конденсаторов в устройстве должно быть предусмотрено как минимум пять. Емкость их в среднем обязана составлять 5 пФ.

Если устанавливать их непосредственно возле катушки индуктивности, то лучше всего использовать дополнительно многослойный конденсатор. Контролеры в данном случае устанавливаются только поворотного типа. При этом регулировка импульсного блока питания будет происходить довольно плавно.

Как сделать блок с синазным дросселем?

Схема импульсного блока питания 12В с синазным дросселем включает в себя катушку, конденсатор, а также преобразователь. Последний элемент подбирается исходя из уровня отрицательного сопротивления в цепи. Также важно заранее рассчитать параметр предельной частоты. В среднем он должен быть не ниже 45 Гц. За счет этого стабильность системы значительно повысится. Работа импульсного блока питания данного типа основывается на изменении фазы за счет повышения модуляции.

Блоки с применением керамических конденсаторов

Сделать мощный импульсный блок питания с керамическими конденсаторами довольно сложно из-за высокого сопротивления цепи. В результате встретить такие модификации на сегодняшний день проблематично. Как правило, они изредка применяются на различном аудиоборудовании. Резисторы в данном случае подходят только полевого типа. Также следует заранее подбирать качественный преобразователь. Обмотка на нем должна быть только медная.

При этом витки обязаны быть направлены как сверху вниз, так и снизу вверх. Прерывание сигнала в данном случае напрямую зависит от скорости процесса преобразования. Если температура в системе повышается довольно быстро, в первую очередь страдают именно конденсаторы. При этом дымок над платой появляется довольно часто. В таком случае ремонт блока следует начинать с замены конденсаторов. После этого проверяется пороговое напряжение на внешней обмотке катушки индуктивности. Завершать работы следует с зачистки контактов.

Модели с каплевидными конденсаторами

Принцип работы блоков с каплевидными конденсаторами стандартно заключается в изменении фазы. При этом преобразователь в процессе играет ключевую роль. Для стабильной работы системы параметр отрицательного сопротивления должен находиться на уровне не ниже 5 Ом. В противном случае конденсаторы перегружаются. Катушку индуктивности в данном случае можно использовать любую. При этом параметр модуляции обязан находиться в районе 70 %. Резисторы для таких блоков используются только векторные. Проходимость тока у них довольно высокая. При этом стоят они на рынке дешево.

Применение варисторов

Варисторы в маломощных блоках используются крайне редко. При этом они способны значительно повысить стабильность работы прибора. Устанавливаются данные элементы, как правило, возле катушки индуктивности. Скорость процесса интегрирования в данном случае зависит напрямую от типов конденсаторов. Если использовать их с предельной емкостью на уровне 5 пФ, то коэффициент модуляции будет находиться на уровне 60 %.

Прерывание сигнала в данном случае может происходить из-за сбоев преобразователя. Ремонт блока необходимо начинать с обследования состояния контактов. Только после этого проверяется целостность обмотки катушки индуктивности. Контролеры для таких блоков подходят самые разнообразные. Кнопочные варианты следует рассматривать в последнюю очередь. Регулирование блока при этом будет зависеть во многом от проводимости контактов.

Сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется... И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 - самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП .

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Теперь самое интересное в ИИП - трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это - ExcellentIT . В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева - 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

Изготовить блок питания 12В своими руками несложно, но для этого вам потребуется изучить немного теории. В частности, из каких узлов состоит блок, за что отвечает каждый элемент изделия, основные параметры каждого. Также важно знать, какие трансформаторы необходимо использовать. Если нет подходящего, то можно перемотать вторичную обмотку самостоятельно для получения нужного напряжения на выходе. Нелишним будет узнать о методах травления печатных плат, а также про изготовление корпуса блока питания.

Компоненты блока питания

Основной элемент любого блока питания - это При его помощи происходит снижение напряжения в сети (220 Вольт) до 12 В. В конструкциях, рассмотренных ниже, можно использовать как самодельные трансформаторы с перемотанной вторичной обмоткой, так и готовые изделия, без модернизации. Нужно только учитывать все особенности и проводить правильный расчет сечения провода и количества витков.

Второй элемент по важности - это выпрямитель. Изготовляется он из одного, двух либо четырех полупроводниковых диодов. Все зависит от типа схемы, по которой собирается самодельный блок питания. Например, для реализации нужно использовать два полупроводника. Для выпрямления без увеличения достаточно одного, но лучше применить мостовую схему (все пульсации тока сглаживаются). После выпрямителя обязательно наличие электролитического конденсатора. Желательна установка стабилитрона с подходящими параметрами, он позволяет на выходе сделать стабильное напряжение.

Что такое трансформатор

Трансформаторы, используемые для выпрямителей, имеют следующие компоненты:

  1. Сердечник (магнитопровод, изготовленный из металла либо ферромагнетика).
  2. Сетевую обмоту (первичная). Запитывается от 220 Вольт.
  3. Вторичную обмотку (понижающую). Служит для подключения выпрямителя.

Теперь обо всех элементах более подробно. Сердечник может иметь любую форму, но наиболее распространены Ш-образные и U-образные. Реже встречаются тороидальные, но у них специфика иная, чаще применяются в инверторах (преобразователях напряжения, например, из 12 в 220 Вольт), нежели в обычных выпрямительных устройствах. Блок питания 12В 2А целесообразнее делать с использованием трансформатора, имеющего Ш-образный или U-образный сердечник.

Обмотки могут располагаться как друг на друге (сначала первичная, а после вторичная), на одном каркасе, так и на двух катушках. В качестве примера можно привести трансформатор с U-образным сердечником, на котором имеются две катушки. На каждой из них произведена намотка половины первичной и вторичной обмоток. При подключении трансформатора требуется соединять выводы последовательно.

Как произвести расчет трансформатора

Допустим, вы решили намотать вторичную обмотку трансформатора самостоятельно. Для этого вам надо будет узнать величину главного параметра - напряжения, которое можно будет снять с одного витка. Это самый простой способ, которым можно воспользоваться при изготовлении трансформатора. Намного сложнее вычислить все параметры, если требуется намотка не только вторичной, но и первичной обмотки. Необходимо для этого знать сечение магнитопровода, его проницаемость и свойства. Если рассчитывать блок питания 12В 5А самому, то этот вариант получается более точным, нежели подстраиваться под готовые параметры.

Первичную обмотку наматывать сложнее, чем вторичную, так как в ней может быть несколько тысяч витков тонкого провода. Можно упростить задачу и самодельный блок питания изготовить при помощи специального станка.

Чтобы рассчитать вторичную обмотку, нужно намотать 10 витков тем проводом, который планируете использовать. Соберите трансформатор и, соблюдая технику безопасности, подключите его первичную обмотку к сети. Проведите замер напряжения на выводах вторичной обмотки, полученное значение разделите на 10. Теперь число 12 разделите на полученное значение. И получаете количество витков, необходимое для вырабатывания 12 Вольт. Можно добавить немного, чтобы компенсировать (достаточно увеличить на 10%).

Диоды для блока питания

Выбор полупроводниковых диодов, используемых в выпрямителе блока питания, напрямую зависит от того, какие значения параметров трансформатора необходимо получить. Чем больше сила тока на вторичной обмотке, тем мощнее диоды необходимо использовать. Предпочтение стоит отдавать тем деталям, которые изготовлены на основе кремния. Но не стоит брать высокочастотные, так как они не предназначены для использования в выпрямительных устройствах. Их основное предназначение - детектирование высокочастотного сигнала в радиоприемных и передающих устройствах.

Идеальное решение для маломощных блоков питания - это применение диодных сборок, 12В 5А с их помощью можно разместить в гораздо меньшем корпусе. Диодные сборки - это набор из четырех полупроводниковых диодов. Используются они исключительно для выпрямления переменного тока. Работать с ними гораздо удобней, не нужно делать много соединений, достаточно на два вывода подать напряжение от вторичной обмотки трансформатора, а с оставшихся снять постоянное.

Стабилизация напряжения

После изготовления трансформатора обязательно проведите замер напряжения на выводах его вторичной обмотки. Если оно превышает значение 12 Вольт, то необходимо провести стабилизацию. Даже самый простой блок питания 12В плохо будет работать без этого. Следует учесть, что в питающей сети величина напряжения непостоянна. Подключите вольтметр к розетке и проведите замеры в разное время. Так, например, днем оно может подскочить до 240 Вольт, а вечером опуститься даже до 180. Все зависит от нагрузки на линию электропередач.

Если у вас в первичной обмотке трансформатора изменяется напряжение, то оно будет нестабильно и во вторичной. Чтобы компенсировать это, нужно применить устройства, называемые стабилизаторами напряжения. В нашем случае можно использовать стабилитроны с подходящей величиной параметров (тока и напряжения). Стабилитронов множество, подберите необходимые элементы до того, как делать 12В блок питания.

Существуют и более «продвинутые» элементы (типа КР142ЕН12), которые представляют собой комплект из нескольких стабилитронов и пассивных элементов. Их характеристики намного лучше. Также встречаются и зарубежные аналоги подобных устройств. Необходимо познакомиться с этими элементами до того, как сделать12В блок питания вы решите самостоятельно.

Особенности импульсных блоков питания

Блоки питания такого типа нашли широкое применение в персональных компьютерах. У них на выходе имеется два значения напряжения: 12 Вольт - для питания приводов дисководов, 5 Вольт - для функционирования микропроцессоров и иных устройств. Отличие от простых блоков питания состоит в том, что на выходе сигнал не постоянный, а импульсный - по форме похож на прямоугольники. В первый период времени сигнал появляется, во второй он равен нулю.

Также имеются отличия и в схеме устройства. Для нормального функционирования самодельный импульсный блок питания нуждается в выпрямлении сетевого напряжения без предварительного понижения его значения (на входе отсутствует трансформатор). Использовать импульсные блоки питания можно как самостоятельные устройства, так и их модернизированные аналоги - аккумуляторные батареи. В итоге можно получить простейший бесперебойник, причем его мощность будет зависеть от параметров блока питания и типа используемых батарей.

Как получить бесперебойное питание?

Блок питания достаточно подключить параллельно аккумуляторной батарее, чтобы при выключении электричества все устройства продолжили работать в нормальном режиме. При подключенной сети блок питания производит зарядку батареи, принцип схож с работой электроснабжения автомобиля. А когда бесперебойный блок питания 12В отключаете от сети, происходит подача напряжения на всю аппаратуру от аккумулятора.

Но бывают случаи, когда необходимо на выходе получить сетевое напряжение 220 Вольт, например, для питания персональных компьютеров. В этом случае потребуется внедрение в схему инвертора - устройства, которое преобразует постоянное напряжение 12 Вольт в переменное 220. Схема оказывается сложнее, нежели у простого блока питания, но собрать его можно.

Фильтрация и отсечение переменной составляющей

Важное место в выпрямительной технике занимают фильтры. Взгляните на блок питания 12В, схема которого наиболее распространена. Она состоит из конденсатора, сопротивления. Фильтры отсекают все лишние гармоники, оставляя на выходе блока питания постоянное напряжение. Например, простейший фильтр - это электролитический конденсатор с большой емкостью. Если взглянуть на его работу при постоянном и переменном напряжениях, то становится ясен его принцип функционирования.

В первом случае он имеет определенное сопротивление и в схеме замещения он может быть заменен на постоянный резистор. Актуально это для проведения расчетов по теоремам Кирхгофа.

Во втором случае (при протекании переменного тока) конденсатор становится проводником. Другими словами, его можно заменить перемычкой, у которой нет сопротивления. Она соединит оба выхода. При более подробном изучении можно увидеть, что переменная составляющая уйдет, ведь выходы замыкаются во время протекании тока. Останется только постоянное напряжение. Кроме того, для быстрого разряда конденсаторов собираемый блок питания 12В своими руками необходимо на выходе укомплектовать резистором с большим сопротивлением (3-5 МОм).

Изготовление корпуса

Для изготовления корпуса блока питания идеально подойдут алюминиевые уголки и пластины. Сначала необходимо сделать своеобразный скелет конструкции, который впоследствии можно обшить листами из алюминия подходящей формы. Для уменьшения веса блока питания можно в качестве обшивки использовать более тонкий металл. Изготовить блок питания 12В своими руками из таких подручных материалов несложно.

Идеально подойдет корпус от микроволновой печи. Во-первых, металл достаточно тонкий и легкий. Во-вторых, если сделать все аккуратно, то лакокрасочное покрытие не повредится, поэтому внешний вид останется привлекательным. В-третьих, размер обшивки микроволновой печи довольно большой, что позволяет сделать практически любой корпус.

Изготовление печатной платы

Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок

Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.

Как протравить плату

Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.

Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа - плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.

Монтаж компонентов

После процедуры травления вам потребуется ополоснуть плату, очистить от защитного слоя дорожки, обезжирить их. Наметьте расположение всех элементов, просверлите отверстия для них. Больше 1,2-мм сверло не стоит применять. Установите все элементы и припаяйте их к дорожкам. После этого необходимо все дорожки покрыть слоем олова, т. е. произвести их лужение. Изготовленный блок питания 12В своими руками с лужением монтажных дорожек прослужит вам намного дольше.