Светодиодные лампы рабочее напряжение. Ремонт светодиодных ламп своими руками

Разборка и доработка китайских светодиодных ламп

На нашем сайте имеется достаточно публикаций, посвящённых источникам света. Это, прежде всего, лампы накаливания; здесь мы нашли решение, как защитить их от перегорания и продлить срок службы. Пожалуй, они до сих пор остаются самым массовым источником света, и причина здесь не только в доступности, но и в том, что спектр их излучения наиболее приятен для глаз. Помимо обычных лампочек, пользуются популярностью так называемые "энергосберегайки" - компактные люминесцентные лампы. Мы приводили описание способов ремонта и доработок, которые также увеличивают срок службы. Однако, следует рассмотреть и светодиодные источники света, как набирающие популярность.

Светодиодная лампа представляет собой несколько светодиодов (или светодиодную матрицу) со схемой питания, заключённой в цоколе. Правильное питание светодиодов - целая наука, благо драйверов сетевого питания придумано предостаточно, от специализированных микросхем до простых схем на двух транзисторах. Однако, производители очень редко пользуются достижениями схемотехники и современной электроники, предпочитая питать светодиоды по привычке - через балластный (гасящий) конденсатор.

Для исследования были приобретены три светодиодных лампы мощностью 3Вт Китайского производства по цене 35 рублей за штуку.



Корпус выполнен из пластмассы, рассеиватель в виде полусферы - также пластмассовый, крепится без клея, просто защёлкивается. Чтобы разобрать светодиодную лампу, достаточно поддеть рассеиватель по кругу и вывести из зацепления с корпусом лампы. При этом освобождается печатная плата с деталями.



В двух лампах из трёх имеется непропай одного провода, в остальном монтаж более-менее аккуратный. Гасящий конденсатор с маркировкой 824 - на 820нФ (0,82мкФ), 400В. 9 светодиодов размера, похожего на 3528, только более тонких, соединены последовательно. Мостик собран из четырёх диодов с маркировкой M7.



Одна такая лампа светит весьма слабо. При мощности лампы 3Вт её свет должен быть сравним с лампой накаливания мощностью 20-25Вт. Данные лампы светят более тускло, что как бы намекает нам на необходимость обмера, что вскоре и будет сделано, заодно будет выяснена необходимость доработки - есть ли существенный бросок тока при включении, работают ли светодиоды, что называется, "с перекалом"?



Схема светодиодной лампы проста. Как уже говорилось, светодиоды питаются через гасящий конденсатор.

Моделирование показывает, что через светодиоды протекает ток 32мА, суммарное падение напряжения на цепочке из девяти светодиодов составляет 26В, таким образом, потребляемая ими мощность составляет 0.8Вт, что втрое меньше заявленного.

Эти лампы продаются как трёхваттные. Разумеется, их реальная мощность - втрое меньше. В каждой лампе установлены 10 светодиодов 2835. Судя по даташитам, эти светодиоды допускают ток до 150мА при хорошем теплоотводе. В данном конкретном случае всё это дело питается через балластный конденсатор ёмкостью 0,82мкФ и последовательно включённый резистор на 100 Ом. Замыкание резистора не оказывает значительного влияния на яркость свечения. Лампы светят очень тускло.



Разбирается простым наклоном матового рассеивателя в сторону. Плата светодиодов закреплена силиконовым клеем.

Планировалась следующая переделка: увеличить ёмкость балластного конденсатора с целью увеличения тока. Для проверки был установлен конденсатор ёмкостью 1,5мкФ. При этом алюминиевая подложка светодиодов чрезмерно нагревалась. Поэтому доработка данных ламп оказалась невозможной.

Следующие лампы - более честная продукция дядюшки Ляо. Лампа предназначена для питания напряжением 12 вольт (блоки питания галогенок). Корпус является одновременно радиатором из честного алюминия.



Лампы выполнены на основе светодиодов мощностью 1 ватт, соединённых последовательно. Внутри цоколя имеется сверхкомпактный стабилизатор неизвестно чего, который (внимание!) не работает. Яркость свечения ламп меняется в зависимости от питающего напряжения. И это при том, что под термоусадкой в одной из ламп скрывается знаменитая MC34063 и XL6001 в другой.

Разбирается откручиванием верхней и нижней частей.

Возможная переделка: переделать под 220 вольт и "человеческий" цоколь. При этом требуется переделка конструкции лампы.
Доработка больших кукуруз. Сами лампы разбираются просто - снятием пластмассового кольца на торце. Оно фиксируется при помощи маленьких стерженьков, часть из которых может быть проклеена. Их придётся оторвать. Когда кольцо снимется, освободится круглая площадка со светодиодами. Внутри лампы находится небольшая плата с конденсаторным балластом, на которой установлен электролитический конденсатор ёмкостью 4,7 мкФ. Этой ёмкости явно недостаточно для данной мощности лампы, результатом чего является незаметное для глаз мерцание. Есть и другой, не явный недостаток: малая ёмкость этого электролита - недостаточная нагрузка для конденсаторного балласта в начале работы. Как известно, у разряженного конденсатора - нулевое сопротивление и при включении лампы происходит скачок напряжения, который вполне может выжечь какой-нибудь светодиод. Для защиты от этого неприятного явления следует устанавливать конденсатор большей ёмкости, который обеспечит необходимую просадку напряжения при включении или шунтировать светодиоды стабилитроном. Второй вариант более сложный (нужно ещё найти стабилитрон на сравнительно высокое напряжение) и не избавляет от мерцания, поэтому очевидная доработка - установка электролитического конденсатора большей ёмкости.


Изначально плата не достаётся, т.к. соединена короткими проводами с цоколем лампы. Выдвигая её максимально, отпаиваем проводки. Это вполне возможно сделать. Выпаиваем конденсатор на 4,7 мкФ и устанавливаем на его место более ёмкий, в данном случае - на 68 мкФ 450В. Место внутри лампы позволяет установить его с обратной стороны платы. Стабилитрон пока не ставим - погоняем лампу так.

Собирается всё в обратном порядке. Следует также помнить, что лампа с конденсаторным балластом гальванически связана с сетью и представляет опасность. Поэтому не будет лишним приклеить или нарисовать соответствующие обозначения, чтобы избежать прикосновения к токоведущим частям. Собственно, почти вся лампа - и есть такие части. При установке или извлечении держать её нужно очень аккуратно, за пластиковое кольцо.

Ремонт светодиодных ламп на 220 вольт, при желании, можно сделать в домашних условиях, но для этого непременно нужно иметь в наличии паяльник и мультиметр.

Светодиодные лампы такого типа на английском называются “LL-CORN”, что в переводе означает (лампа-кукуруза), по внешнему виду действительно похоже на початок кукурузы. Такие “початки” выпускаются в множестве видов. Выбрать действительно качественную продукцию сложно. Большинство подобных лампочек производится в Китае и являются подделками, но данная статья будет не о борьбе с поддельной продукцией, а поговорим на тему: ремонт светодиодных ламп кукуруза.

Лампы такого типа как на фотографии выпускают на 24, 30, 36, 48, 56, 69, 72 светодиода. В настоящее время эти лампы оснащают светодиодами SMD5730 или SMD5733. Их данные:

SMD5730 – размеры указаны в названии 5.7 мм. на 3.0 мм. Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 30 – 45 люмен.

SMD5733 – размеры указаны в названии 5.7 мм. на 3.3 Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 35 – 50 люмен. Но нужно сказать, что светодиоды, выпущенные в Китае, часто не соответствуют заявленным характеристикам.

Если светодиодная лампа перестала светить, то её не нужно сразу выбрасывать, ремонт такой лампы не сложен и может быть сделан практически любым человеком, кто умеет держать в руках паяльник. Но до ремонта лампы нужно убедиться, что лампа получала питание в месте, где она стояла. Это значит, что на место выкрученной лампы нужно вкрутить другую и убедиться, что не работает именно лампа, а не сам светильник.

Для ремонта, нужно добраться до внутренностей, и тут возникает вопрос как вскрыть светодиодную лампу? Ответ прост – при помощи обыкновенного кухонного ножа. Нужно нож вставить в место где соединяется корпус лампы с защитным прозрачным кожухом и повернуть до выхода паза кожуха из выступа корпуса.



Кожух выскочит с лёгким щелчком.



Перед нами открывается вся “начинка” лампы. Первым делом осматриваем всё внутри и убеждаемся, что пайка деталей качественная (если нет, то пропаиваем сомнительные места). Если есть почерневшие детали, то меняем их на аналогичные.

Для определения номиналов деталей, в статье ниже приведена общая схема для подобных ламп и дано перечисление номиналов деталей, в зависимости от мощности лампы. Если есть почерневшие светодиоды, то они однозначно подлежат замене на точно такие же. При замене светодиодов, обязательно обращайте внимание на полярность. Если перепутаете плюс с минусом, то он работать не будет.

Если у Вас мощный паяльник, то для пайки маленьких светодиодов, нужно намотать на жало паяльника кусок медной проволоки подходящего диаметра и паять при её помощи.

Вздутый конденсатор – меняем. Есть трещина на детали – меняем. Трещина на печатной плате – припаиваем перемычку на дорожки схемы или зачищаем лак по обеим сторонам трещины и наносим паяльником каплю олова. Если нет подходящих деталей, то эту сгоревшую лампочку оставляем как донора для будущих ремонтов.

Бывает, что внешний вид детали нормальный, но у неё есть внутренние повреждения. В этом случае без мультиметра не обойтись. Конденсаторы проверяем на пробой, а резисторы на обрыв. В схеме светодиодных ламп деталей мало и проверить их все не составляет большого труда.



Исключение составляют лампы, где питание реализовано на драйверах из микросхем. Ремонт драйвера светодиодной лампы, состоящего из микро компонентов в домашних условиях можно сделать, но ограниченно и это под силу только профессионалам. В нашей лампе схема простая.



У всех лампочек серии, которую мы рассматриваем, схема одинакова. Отличается только количество светодиодов и номиналы некоторых элементов. Для ремонта важно знать принцип работы схемы и какую роль выполняют детали. Начнём сначала.

Конденсатор C1, является гасящим и заменяться может точно таким же, как в лампе, рассчитанным на 400 вольт.

Для лампы с 24 светодиодами он 0.56 микрофарад. Для лампы 30 светодиодов – 0.68 мкф. 36 – 48 светодиодов – 0.82 мкф. 56 – 69 светодиодов – 1.2 мкф. Обозначается 564J400v, 684J400v, 824J400v, L105J400v, соответственно.

Конденсатор C2 служит для сглаживания пульсаций выпрямленного диодной сборкой тока и может быть заменён любым полярным конденсатором от 2.2 до 10 микро фарад напряжением от 100 до 400 вольт. Но эти номиналы лучше взять по максимуму. Чем больше номинал, тем меньше будет мерцание светодиодов. Проведите эксперимент с фотокамерой телефона, наставив объектив на включенную светодиодную лампочку.

Резисторы R1 и R2 служат для разряда конденсаторов, параллельно которым они подключены, и могут быть заменены любыми от 500 кило ом до 1.5 мега ом.

Диодная сборка используется MB6S и может быть заменёна любой подобной или можно использовать четыре диода, например 1N4007 или любые подобные, включенные по схеме моста.

Резистор R3 ограничивает ток светодиодов и его номинал зависит от количества их в лампе. 24 – 30 светодиодов – 33 ома. 36 светодиодов – 36 ом. 48 светодиодов – два параллельно подключенных по 100 ом, получается 50 ом. 56 светодиодов – 100 ом. 69 светодиодов – два параллельных по 390. Заменять можно такими же по мощности или больше. От сопротивления этого резистора зависит ток, который проходит через светодиоды и, значит яркость их свечения. Если номинал резистора взять меньше, то свечение повысится, но срок службы светодиода существенно понизится и наоборот.

Теперь Вы сами сможете сделать ремонт светодиодных ламп на 220 своими руками.

Удачи Вам в Ваших делах.

Я всегда говорил, что будущее за светодиодами. Это, прежде всего, благодаря их долговечности и экономии электроэнергии. Однако, сегодня, технология изготовления этих ламп ещё не совершенна, уже сама высокая цена говорит об этом, и приобретать это новшество ещё рано. Но ведь не слушает никто, и покупают, а потом с претензиями, - вот гляди, уже не работает.
Но для меня это было похоже на разминку, когда на мой стол положили пару бракованных ламп.

Сказать по правде я впервые разглядывал эти лампы, сделанные из толстого стекла, они казались неразборными, что только подтверждало мою теорию об их несовершенстве, и пока я вслухрассуждал об этом, один из слушателей взяв фен, просто нагрел по контуру стеклянный цилиндр и приклеенный круг стекла сам вышел из объятий. При высокой температуре увеличиваются линейные размеры, а клей становится эластичным.В глаза сразу бросились два не запаянных светодиода (они были приподняты с одной стороны, такое бывает при падении). В другой лампе взорвался электролитический конденсатор. Но причина не только в нём, а в неисправности одного светодиода, который разорвав цепь, тем самым превратил напряжение на конденсаторе равное 100 вольтам в разность потенциалов 300 вольт, что и привело к взрыву.

Вот самая простая, а потому наиболее распространённаяэлектрическая схема светодиодных ламп без трансформаторов.С неё и начнём. Но сначала немного теории.

Конденсатор С1 играет роль гасящего резистора, поскольку на частоте переменного тока имеет сопротивление, но в отличие от резистора не рассеивает тепло и служит для уменьшения напряжения последовательной цепи. Иногда вместо одного конденсатора ставят два в параллель, для достижения необходимой яркости свечения. Для надёжной работы лампы их рабочее напряжение должно быть больше 450 вольт.

Диодный мост служит для преобразования переменного тока в постоянный.

Конденсатор С2 сглаживает пульсации 100 Гц выпрямленного напряжения моста. Его рабочее напряжение должно быть более 300 вольт.

Высокоомные резисторы R1, R2, параллельно конденсаторам С1 и С2, служат цели электробезопасности, для снятия зарядов с этих конденсаторов, чтобы не тряхнуло током, если коснуться цоколя только что снятой лампы.

Низкоомные резисторы R3, R4 - защитного назначения, ограничивающие броски тока, в ряде случаев срабатывают как предохранители, перегреваясь и выходя из строя, размыкая цепь питания при коротком замыкании.

Из всех перечисленных радиокомпонентов меньше всего выходят из строя высокоомные резисторы и выпрямительные мосты.

Дедка за репку, бабка за дедку и т. д.


Как правило чаще выходит из строя один из светодиодов матрицы по причине короткого замыкания конденсатора С1. При замыкании этого конденсатора, увеличивается напряжение и ток на светодиодной матрице, и яркое свечение лампы длиться недолго, до момента, пока не выйдет из строя самый слабый элемент матрицы. Вышедший из строя светодиод, размыкает цепь, и напряжение на конденсаторе С2 достигает значения 300 вольт. Конденсатор С2 (его рабочее напряжение было 100 вольт) взрываясь, закорачивает цепь питания и выводит из строя низкоомные резисторы R3, R4, которые от предельно высокого тока моментально нагреваются, и их проводящий слой трескается, разрывая цепь питания.

Наверно это самая худшая сказка из моего детства, но намёк остаётся в силе – мало найти причину отсутствия свечения, необходимо также отыскать следствие.

Поиск неисправных компонентов


Итак, лампа вскрыта. Первое, что я сделал, тщательным образом посмотрел монтаж.

1. Самое простое – провод отвалился от цоколя лампы. Такое уже было с энергосберегающими лампами. Сам провод можно нарастить, а вместо паяногоили сварного соединения с алюминиевым цоколем можно применить резьбовое соединение.

2. Разбухший или выгоревший электролитический конденсатор С2, я просто удалил. Для надёжности использовал конденсатор с рабочим напряжением более 300 вольт. Лампа будет функционировать и без него.

3. Тестером прозвонил низкоомные резисторы R3, R4, показания должны быть в пределах 100 – 560 Ом (101 – 561 обозначение чип-резисторов). Один из резисторов не показывал своего значения, и я егозаменил.

4. Теперь очередь конденсатора С1. Он заблокирован защитным резистором R1 от 100 кОм (104) и выше 510 кОм, (514, последняя цифра чип-резисторов подразумевает количество нолей) номинал которого покажет омметр, что говорит об исправности самого конденсатора, по крайней мере он не пробит. Этот конденсатор необходимо поставить на напряжение не менее 450 вольт. Иногда, в целях уменьшения габаритов, производители ламп ставят конденсаторы на меньшее рабочее напряжение, что приводит к их выходу из строя.

5. Теперь можно включить схему в сеть и измерить тестером постоянное напряжение на конденсаторе С2 или на токопроводящих площадках, где он стоял. Свечение отсутствовало, и при этом постоянное напряжение было 1,4 раза больше переменного напряжения сети 220 вольт и составило 308 вольт, что указывало на обрыв светодиодной матрицы, но на исправность диодного моста.

6. Поиск неисправного светодиода начинаю с визуального осмотра, отключенной от сети лампы. Внешне такой элемент отличается от других черной точкой на поверхности кристалла. Итак, подозреваемый элемент найден, но для уверенности можно воспользоваться тестером и сравнивать сопротивление перехода каждого светодиода в прямом включении. Оно должно составлять около 30 кОм.

Если все элементы матрицы показывают одинаковое сопротивление, и при её подключении свечение отсутствует, а постоянное напряжение на конденсаторе С2 резко упало до единиц вольт, то это говорит о неисправности конденсатора С1. Скорее всего он будет в обрыве.

Не советую делать так, как делал сам. Завернув свободную руку за спину, другой рукой, острым пинцетом у включённой лампы замыкал токопроводящие площадки каждого светодиода по очереди, до момента, пока не загорится вся матрица. Так легко отыскать элемент, из-за которого лампа будет тускло светить, моргать или включаться на непродолжительное время. Возможно, сам элемент будет просто иметь плохой контакт с проводящей дорожкой из-за плохой пайки.



Рис.4.

Есть ещё один способ проверки светодиодной матрицы (рис. 4.). С помощью питания от контейнера с двумя батарейками с общим напряжением 3 вольта или от одной батарейкис таким напряжением. С помощью последовательно соединённого резистора R = 100 Ом подсоединяю выводы с напряжением 3 вольта в соответствующей полярности к каждому светодиоду D, не выпаивая его из схемы и убеждаюсь в его свечении (он будет светиться только в прямом включении).

Внимание!


Прогресс не стоит на месте, и мне попалась светодиодная лампа, в которой светодиоды представлены в виде двух последовательно соединённых полупроводниковых кристаллов в одном корпусе, а это значит, что от напряжения 3 вольта они не загорятся. Для проверки используется та же схема (рис. 4), только с контейнером на 4-е батарейки, то есть необходимо иметь напряжение 6 вольт и резистор 100 Ом, ограничивающий ток.



Эта лампа на 220 вольт выполнена с преобразователем на пониженное напряжение, что не даёт ей полностью погаснуть при выходе из строя одного светодиода. Что делать если её уровень освещённости упал и задрожал, словно от холода? Причина – в избытке тепла внутри цоколя. Жару не любят электролитические конденсаторы и сохнут от этого, их ёмкость падает, из-за чего и растёт пульсация выпрямленного диодным мостом напряжения, которая и вызывает дрожание света. Просто необходимо было заменить электролитический конденсатор.




Фото 3.

Светодиодная лампа на 12 вольт.




Рис. 5 Схема соединений.

Мне попался такой вариант ее схемы.

Опять теория.

Диодный мост (D 1-D 4) на клеммах лампы делает её универсальной, что позволяет подключаться к постоянному напряжению, не беспокоясь о переполюсовке, кроме того, даёт возможность использовать лампу с низковольтным источником переменного напряжения с интервалом от 6 до 20 вольт, (для постоянного с интервалом от 8 до 30 вольт).

За такой большой разброс напряжения отвечает преобразователь (микросхема CL 6807, R 1, R 2, L1 , D 5). Его задача ограничивать ток с ростом напряжения. В отличие от ограничивающего тока резистора, данный преобразователь, обладает высоким КПД = 95 процентам, он же экономит электроэнергию и, не выделяя излишки тепла, занимает меньше места, чем резистор.

Сами светодиоды - D6 - D9.

Всё вроде хорошо, но лампы выходят из строя . Основная причина – некачественные светодиоды, (если точнее, некачественная сварка кристалла полупроводника к отводам для распайки). В этой схеме отключение будет парами, предварительно лампа будет подавать сигналы миганием. Нахожу неисправный светодиод, поочерёдно подключаясь 3-х вольтовой конструкцией (рис. 4) к каждому светодиоду отключенной лампы. Таким образом, из двух ламп можно восстановить одну, оставив запчасти для лучших времён, (кстати, красивые радиаторы для транзисторов).


Но как быть, если вы не смогли починить лампу? Не расстраивайтесь. Из сломанной лампы можно сделать массу разнообразных поделок.

Фото 5 Заходите на огонёк.

Схема светодиодной лампы на 220 В позволяет не только понять принцип работы данного устройства, но и изготовить его своими руками. Попытки сделать лампочки типа е27 самостоятельно обусловлены тем, что далеко не всегда удается приобрести осветительный прибор с необходимыми характеристиками. Да и просто те, кто любит «возиться» с электроникой, не прочь попробовать что-то новое.

  • Важные нюансы
  • Схемы
    • С диодным мостом
      • Светодиоды
    • Резисторная

Важные нюансы

Схема балласта и непосредственно схема светодиодной лампы — интересующий многих момент. Не редко мы задаемся вопросами относительно того, можно ли сделать светодиодную лампочку самостоятельно. Ответ однозначный — да.

Такое устройство может быть изготовлено своими руками. Существует множество систем, согласно которым светодиодное освещение функционирует от переменного тока номиналом 220 Вольт. Причем все они, вместе со схемой балласта, призваны решать три основные задачи.

  • Преобразовать переменный ток сети 220в в пульсирующий ток;
  • Выровнять пульсирующий ток, сделав его постоянным;
  • Добиться показателей силы тока в 12 Вольт.

Если вы хотите собрать устройство своими руками, питающееся от обычной сети в 220 Вольт, для подключения придется разобраться с некоторыми основными проблемами.

  1. Где расположить схемы и непосредственно само устройство на основе светодиодов. Ведь для диодов потребуется свое место.
  2. Как можно изолировать устройство осветительного светодиодного прибора.
  3. Как обеспечить необходимый теплообмен для подключения лампы.

Конечно, можно спокойно приобрести популярную светодиодную лампу е27. Диодное устройство е27 является одним из наиболее востребованных на рынке, отлично работает от обычной бытовой сети на 220 Вольт. Но это слишком просто и для многих не интересно.

Схемы

Чтобы собрать схему и получить на ее основе светодиодное устройство для освещения дома от питания 220 Вольт, вам потребуется:

  • Выровнять переменный ток;
  • Добиться требуемых параметров мощности;
  • Обеспечить необходимое сопротивление.

Все это можно сделать двумя способами. Существует две основные вариации.

  1. Схема на основе диодного моста.
  2. Резисторная схема, где используется четкое количество светодиодов.

Они достаточно простые, потому устройство собирается без особых проблем. Рассмотрим сами схемы и оценим их преимущества.

С диодным мостом

  • Конструкция диодного моста включает 4 разнонаправленных светодиода;
  • Задача диодного моста — сделать пульсирующий ток из синусоидального переменного;
  • Полуволны проводят через 2 диода, за счет чего минус теряет полярность;
  • В схеме необходимо подсоединить на плюс конденсатор со стороны источника переменного тока перед диодным мостом;
  • Перед минусом устанавливается сопротивление с номиналом 100 Ом;
  • Параллельному мосту, сзади него, потребуется закрепить еще один конденсатор. Он будет сглаживать перепады напряжения;
  • При элементарных навыках работы с паяльником, собрать подобную схему не будет сложно для начинающего мастера.

Светодиоды

  • Светодиодную плату можно использовать стандартную, позаимствованную у нефункционирующего светильника;
  • Перед сборкой обязательно проверьте каждый элемент на предмет работоспособности. Чтобы сделать это, воспользуйтесь 12 Вольтным аккумулятором;
  • Если есть нерабочие компоненты, их контакты нужно отпаять и установить новые;
  • Особое внимание уделяйте ножкам катода и анода. Их следует соединять последовательно;
  • Если вы просто меняете несколько деталей старого светильника, достаточно нерабочие элементы заменить функционирующими, установив их на старые места;
  • Если вы решили собрать устройство самостоятельно, запомните важное правило — лампы светодиодов соединяются последовательно по 10 единиц, после чего цепи следует подключить параллельно.

В результате схема у вас должна выглядеть следующим образом.

  1. 10 светодиодов идут в один ряд. Затем ножки анода и катода спаиваются так, чтобы получилось 9 соединений и по 1 хвостику по краям, которые находятся в свободном положении.
  2. Все полученные цепи соединяют с проводами. К одному идут концы катода, а к другому — концы анода.
  3. Не забывайте, что катод является положительным и соединяется с минусом. Анод — отрицательный, и его необходимо соединять с плюсом.
  4. Следите за тем, чтобы на схеме спаянные между собой концы не прикасались к другим концам. Если подобная ситуация случится, схема сгорит, возникнет короткое замыкание.

Резисторная

Схема электронного балласта может обеспечивать требуемую мощность работы светодиодных светильников, питающихся от 220в.


Другая и достаточно простая схема создания светодиодного устройства для питания от 220 Вольт предназначена для тех, кто хочет все сделать своими руками. Создание балласта и подключения здесь не сложное, потому с подобной задачей способен справиться относительно новичок в сфере электроники.

  • Резисторная схема для светодиодов состоит из пару резисторов 12 К и пары цепочек;
  • Цепочки состоят из одинакового количества светодиодных элементов;
  • Светодиодные элементы припаиваются последовательно и имеют разную направленность;
  • Со стороны R1 выполняется припаивание одной полосы светодиодных элементов катодом, а вторая полоса — анодом;
  • Второй отвод, идущий к R2, выполняется наоборот;
  • За счет такой схемы свечение светодиодных ламп получается мягким. Это обусловлено тем, что светодиодные элементы начинают гореть по очереди, потому пульсирующие вспышки человеческому глазу практически не видны;
  • Подобное светодиодное устройство, питающееся от 220 Вольт, может применяться для освещения рабочего стола, подсветки определенных зон. Потому им можно заменить традиционные светильники, получив аналогичный по эффективности свет или даже свечение более высокого качества;
  • Практика показывает, что резисторная схема светодиодного устройства эффективнее всего себя показывает при использовании минимум 20 светодиодов. А еще предпочтительнее задействовать 40 элементов;
  • За счет такого количества светодиодов и особенностей схемы, вы получаете высококачественное освещение. Проблем со сборкой схемы совершенно нет, все очень просто;
  • Единственными нюансами схемы с 20-40 светодиодами является то, что пайку осуществлять требуется очень аккуратно, дабы не повредить соседние контакты. Плюс собрать все это в единый компактный корпус — еще одна задача.

Возможности светодиодов безграничные. Их применение становится повсеместным. Одновременно с этим работа со светодиодами не вызывает практически никаких сложностей.

В наше время все чаще встает вопрос энергосбережения. Для решения этого вопроса много производителей выпускают энергосберегающие лампы (люминесцентные), имеющие цоколь как у стандартных ламп накаливания на 220 вольт.

Потребление электроэнергии данным видом электроламп, бесспорно, значительно меньше, чем у простых ламп накаливания на 220 вольт. В свою очередь обозначенный срок службы их составляет приблизительно 5000 часов, то есть приблизительно в 5 раз больше срок службы обычной лампы.

Но при всех плюсах в этой электролампе имеется и недостаток - высокая цена. В данных лампах применяется особый электронный балласт, но, хотя он ломается весьма редко, а вот нити данной электролампы сгорают достаточно часто, зачастую не проработав даже заявленного срока службы.

Но сейчас выпускаются светодиоды сверх яркие, которые в свою очередь возможно применить для изготовления самодельной светодиодной лампы своими руками. Срок службы нынешних светодиодов доходит приблизительно до 50000 часов, это почти 6 лет постоянной работы.

Описываемая в данной статье светодиодная лампа своими руками на 220в специально создавалась для питания от электросети напряжением 220 В.

Описание источника питания на 220 вольт для самодельной светодиодной лампы

Электросхема довольно проста, и не требует наладки. Особенностью данной лампы служит использование светодиодов с большим углом излучения, в результате чего создается ровный и яркий свет. В свою очередь к плюсам этой лампы возможно отнести очень небольшое энергопотребление (около 2 Вт) и повышенный КПД.

Главным элементом электрической схемы являются ультраяркие светодиоды (25 штук) белого спектра излучения. В роли HL1 - HL25 лучше применить светодиоды с углом излучения 160 градусов, например, марки 5WW4SC. Их возможно поменять на другие с прямым напряжением от 3,2 до 3,7 вольт и током потребления около 20 мА.

Светодиоды запитаны от бестрансформаторного модуля питания, который состоит из гасящего конденсатора С1, сопротивления R1, выпрямительного моста VD1...VD4, сглаживающей емкости С2 и ограничительного сопротивления R2.

Сетевое напряжение 220 вольт гасится цепью элементов R1, С1, R2. Емкость С1 должна быть иметь напряжение не менее 250 В. Затем пониженное напряжение идет на выпрямительный мост, и дальше через емкостный фильтр С2 напряжение идет на последовательно соединенные HL1 - HL25. При применении в схеме 37-и светодиодов возможно убрать сопротивление R2.

В данной схеме предусмотрена возможность защиты светодиодов от скачка повышенного напряжения 220 вольт. Она состоит из предохранителя на 80 мА и (TVR05361 или FNR05361). При увеличении сетевого напряжения сопротивление варистора резко падает, что приводит к перегоранию предохранителя.